
P2 Dataflow Architecture

1 Introduction

This document provides an overview of the P2 dataflow architecture. The
focus of this document is on the new P2 Dataflow Language (P2DL), put in
place for quickly building dataflow graphs out of P2 ’Element’ objects. The
language syntax resembles much of the Click dataflow language [1] with some
added support for runtime dataflow edits. Some familiarity with P2 elements
is a requirement to understanding this document. Section 2 provides an
overview of the basic P2 dataflow architecture and can be skipped for those
already familiar with P2.

The P2DL compiler is written in Yapps v2 grammar and requires the P2
python library extensions. Support for compiling a P2DL description from
C++ is provided by a DataflowInstaller P2 element. P2DL defines a declar-
ative interface to specify the vertices and edges of a P2 dataflow graph. A
vertex in the dataflow graph description is a P2 element, and an edge specifies
how two elements should be connected. The P2DL compiler takes a dataflow
description and produces a Plumber::Dataflow (or a Plumber::DataflowEdit
in the case of an edit) object that can be installed into a running P2 Plumber.
The P2 Plumber installs the dataflow or the edit if it is valid. The installa-
tion of a dataflow or edit that is not valid will not affect the dataflows of a
running system.

This document describes the new P2 Dataflow Language (P2DL) and
incremental OverLog rule installer, as well as a description of the relevant
aspects of the P2 architecture. In section 2, we provide a brief overview
of P2 elements and how these elements are connected to form a dataflow
graph. Section 3 describes the P2 Python library, which was used to build
the P2DL compiler. The remainder of this document describes our main
contribution – a detailed description of the basic P2DL (Section 4) language
and the incremental OverLog rule installer (Section 5).

1

2 P2 Architecture

2.1 Overview

This section describes the basic P2 dataflow architecture, shown in Figure 1,
consisting of three primary components – Plumber, Dataflow, and Element.
An Element defines a set of input and output ports for receiving and sending
data. A set of Elements form a Dataflow by connecting output ports to the
inputs ports in some fashion. A Dataflow is then semantically checked and
installed into a Plumber, which manages a set of Dataflows that share a single
scheduler. The remainder of this section explores each of these components in
greater detail. But first we must describe the basic data types that Elements
use to process data flowing through the system.

!"#!$%&'()

!""#$*+,-.$$%&'(')"*+(,$-.

&'(')"*/-0($(/*-%1(,023$2.

!"#0.-.123

/#4542(6748$
.//4$(&(+-%/#4542($4.

9"0-$522678%/#4542(6748$4:;
$$$$$$$$$$$$$$$$$$$$$$$+",($7:;
$$$$$$$$$$$$$$$$$$$$$$$/#4542(6748$4<;
$$$$$$$$$$$$$$$$$$$$$$$+",($7<.

!"#0.-.123

/#4542(6748$
.//4$(&(+-%/#4542($4.

9"0-$522678%/#4542(6748$4:;
$$$$$$$$$$$$$$$$$$$$$$$+",($7:;
$$$$$$$$$$$$$$$$$$$$$$$/#4542(6748$4<;
$$$$$$$$$$$$$$$$$$$$$$$+",($7<.

9#9#9

!"#$%!"&'$

(()*+

(()*+

(()*+

!"#$%
&'()*

,#+

-#.#.

-#.#.

-#.#.

!"#$%

&+',*

!
"
#
/.

0112'34/'"$

(()!+

,
4
567
4
2

8
$
9
4
56
7
4
2

8
:
;
)*
+

8
:
;
)!
+

!
.
/5<

!"#$%!"&'$

(()*+

(()*+

(()*+

!"#$%
&'()*

,#+

!"#$%
&+',*

!"#-.

/001'23-'"$ (()!+

,
3
456
3
1

7
$
8
3
45
6
3
1

7
9
:
)*
+

7
9
:
)!
+

!.-4;

<#==.4

!"#:;5(/%$()

(054=>?'2-#4@$/($.<=.$$'.;6%-"A!#4$148"2-1;$8'##!'8B$8!.

9"0-$-*&(=.$$'.;6>(&2?(%(054=>?'2-#4@$C'2-#4.

!)*2)*-<#@%(%(9#9#9;'AB ;'AB ;'AB ;'AB ;'AB ;'AB

!"#4$(&(+-

02($8%,5%02($7",(;$DA7#4$(;$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$8'##!'8B$8!.

DA7#4$8%$$%02($7",(;$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$8'##!'8B$8!.

DA7#4$,*&8$(C.;-*2+%DA7#4$(.

Figure 1: Basic P2 dataflow architecture.

2

2.2 P2 Data

A tuple (tuple.h) represents the data type that is passed between Elements
in a Dataflow. A tuple contains a list of value (value.h) types, which are
defined in the ’p2core’ system directory and have a file name prefix=’Val ’.
The types defined include all the base C++ types (e.g., int, float, strings) as
well as some non traditional types (e.g., identity, lists, ip address, etc.). A
tuple is an immutable object in the sense that once an Element creates, it
cannot be changed by some other Element in the dataflow 1.

2.3 Element

Each element defines a set of input ports and output ports. Elements process
the tuples that arrive on its input ports and send, possibly new, tuples on its
output ports. The kind of processing that is performed on a tuple is specific to
the Element type and possibly the port on which a tuple is received. There
are three types of ports that an Element can define on its interface, and
depending on the interface (input or output) these port types have different
semantics. The following enumerates the semantics of each possible port
type.

1. A push input port means that data will be ”pushed” to the Element in
a function call like fashion.

2. A pull input port means that the Element itself will ”pull” from the
upstream Element when it is ready to receive the next tuple.

3. A push output port means that the Element will call (”push”) the
downstream Element when it has generated a new tuple.

4. A pull output port means that the downstream Element will call the
Element (defining the port) when it is ready to accept another tuple.

5. A agnostic input/output port means that both push and pull semantics
are supported on the given Element port.

Further details on defining Element ports can be viewed in element.h, located
in the ’p2core’ system directory.

1It can however be replaced with a completely new tuple created by some downstream
Element.

3

class Element {

. . .

virtual int push(int port, TuplePtr, b_cbv cb);

virtual TuplePtr pull(int port, b_cbv cb);

virtual TuplePtr simple_action(TuplePtr p);

. . .

}

Every Element defines three methods for receiving tuples, as shown above.
The actual methods that are called on receipt of a tuple depend on the port
type. For all port types, the simple action method will be called. An Element
that defines an agnostic port will likely make use of this method. A push
input port will call the push method of the Element receiving the tuple. The
tuple is passed as an argument in the push method. A pull output will call
the pull method of the Element being requested and the Element will return
the tuple.

In some cases the element receiving the tuple, via either a push or pull
port, is no longer willing to accept further tuples. For this reason, both push
and pull methods take a callback method formal of type b cbv having the
following signature.

typedef boost::function<void (void)> b_cbv;

The above type refers to a boost function with void formals and returning
void. When an upstream Element issues a push to a downstream Element,
that can accept no further tuples, the downstream element will register the
upstream Element’s callback and return 0. When a downstream Element
issues a pull to an upstream Element, that can produce no further tuples, the
upstream element will register the downstream Element’s callback and return
an empty tuple pointer. The callback is defined by the calling Element and is
used to signal the Element when the counterpart (upstream or downstream)
Element is ready to accept or produce more tuples. This mechanism permits
flow control between Elements in the Dataflow, and is the primary difference
between P2 and Click-like Dataflows.

4

2.4 Dataflow

A Dataflow is a collection of Elements whose ports have been completely
connected to form a graph with Elements at the vertices and port connec-
tions as the edges. Tuples flow through the Dataflow as they are passed
along the Element ports. Two Elements can be connected together if they
have compatible ports. An output port is compatible with an input port if
they are the same type (e.g., push, pull, or agnostic) or at least one of the
ports is agnostic. Before a Dataflow can be installed its ports are seman-
tically checked for type compatibility. Moreover, all agnostic ports in the
Dataflow must resolve to either a push or a pull port. If there exists any port
incompatibilities or some agnostic port(s) does not resolve the installation
will fail.

class Plumber {

class Dataflow {

. . .

virtual ElementSpecPtr addElement(ElementPtr);

virtual void hookUp(ElementSpecPtr src, int src_port,

ElementSpecPtr dst, int dst_port);

. . .

}

}

The above class definitions show the relevant methods for adding Ele-
ments and connecting Element ports in a Dataflow. The addElement takes
an initialized ElementPtr as argument and returns an ElementSpecPtr to
the caller. The caller uses all the ElementSpecPtr objects returned by the
addElement method as arguments to the hookUp method for connecting the
output port of the src formal to the input port of the dest formal. The port
numbers are indicated by the src port and the dst port formals.

5

2.5 Plumber

class Plumber {

. . .

int install(DataflowPtr d);

. . .

}

A Plumber maintains a set of Dataflows that share a single scheduler. A
Dataflow is installed into the the system through the install method defined
by the Plumber, which takes a DataflowPtr object as argument. The in-
stallation checks the Dataflow for semantic correctness and ensures that all
ports have been assigned a counterpart. If any of these checks fail the in-
stall method return a −1 value, and does not register the Dataflow. If the
Dataflow passes all checks a 0 value is returned and the Dataflow is finalized,
during which all the Element initialize methods are called.

2.6 DataflowEdit

class Plumber {

. . .

class DataflowEdit : public Dataflow {

. . .

ElementSpecPtr find(string);

. . .

}

DataflowEditPtr new_dataflow_edit(string name);

. . .

}

A Dataflow that has been installed will be registered by the Plumber under
the Dataflow name. Thereby, permitting future edits to the Dataflow by
calling the new dataflow edit method while passing the Dataflow name
as argument. The return value of this method is a DataflowEditPtr, which
defines all the methods of the Dataflow class (for adding and connecting new
Elements to the Dataflow) as well as retrieving existing elements from the
Dataflow using the find method of the DataflowEdit class. The find method
returns an ElementSpecPtr that can be used to rewire the existing Element
in whatever fashion you deem fit. Existing Elements that are completely

6

disconnected from the Dataflow (by rewiring of the ports) through the edit
will be garbage collected. Please see plumber.h for further details regarding
the Plumber, Dataflow, and DataflowEdit class structures.

3 P2 Python Library

The primary purpose of the P2 Python library extensions is to incorporate
the basic Element and Dataflow structures into the Python runtime library.
Doing so enables Element and Dataflow operations in a Python environment.
In particular, the Python programmer can add Elements and hook them
together to form a Dataflow using a Python script. The script can then
install the Dataflow into a running Plumber instance, after which all Element
interactions execute entirely in C++.

The Python module extensions permit the ability to incorporate C/C++
code into a Python environment. The raw interface to the Python module
extension library is rather terse and for this reason we have made use of
the Boost Python C++ library (http://www.boost.org/libs/python). Boost
Python provides a set of C++ templates that allow for seamless interoper-
ability between C++ and the Python programming language. The rest of
this section provides a complete description of how we incorporate various
P2 structures into Python using Boost.Python. The Boost.Python website
contains a tutorial that should be read in order to better understand the rest
of this document.

3.1 Library Organization

The P2 Python library is housed in the ’/python/p2’ subdirectory. The
’p2python.cpp’ file contains the code that packages up all library extensions
into a Python module titled ’libp2python’ that can be imported into the
Python interpreter. Please refer to the README file in ’python/p2’ for
details regarding compiling and environment setup. The directory structure
in ’python/p2’ models the top level P2 directory structure. Each subdirectory
contains a number of C++ files containing code that imports, into the Python
module, each P2 type within the respective top level directory. The next
section provides more details on importing various P2 data structures.

7

3.2 Importing P2 Data Structures

class_<Print, bases<Element>, boost::shared_ptr<Print>, boost::noncopyable>

("Print", init<std::string>())

.def(init<std::string, int>())

.def("class_name", &Print::class_name)

.def("processing", &Print::processing)

.def("flow_code", &Print::flow_code)

;

The Boost.Python library provides a template for generating the neces-
sary code that imports a C++ class. The template is titled ’class ’ and an
example import of the Print Element can be seen above. The first argu-
ment to the template is a reference to the C++ class definition. This is
followed the class definitions, wrapped in the bases template, of the C++
classes that Print inherits from, in this case the Element class. The third
argument specifies the reference type that will hold the object after creation.
Here we specify that a newly created Print object should be stored in a
boost::shared ptr type. The copy constructor of the Element class is pri-
vate, so we need to indicate this by the fourth argument boost::noncopyable.
The template constructor follows the template definition, and indicates the
string name of the class (i.e., ”Print”) and the signature of a constructor of
the class wrapped using the init template, which takes the formal types of
the constructor in the order they appear in the C++ class definition. Further
constructor definitions can be added using the .def macro, described next.

The class template provides a .def macro for importing some subset
of public methods in the C++ class definition. The first instance of the
.def macro in the above example defines another constructor to the Print
Element that takes the indicated formal argument types. This is followed by
the definition of three instance methods that take the string method name
as the first argument and a pointer to the method within the class definition.

class_<Val_Str, bases<Value>, boost::shared_ptr<Val_Str> >

("Val_Str", no_init)

.def("mk", &Val_Str::mk)

.staticmethod("mk")

;

The definition above uses the class template for importing the Val Str
class. There are two differences, from the previous example, that are exhib-

8

ited by this example. The first comes from the fact that a P2 value does not
define a constructor, which is indicated by the no init reference in place of
the constructor definition. The second is the definition of the static method
mk, which is defined using the .def macro along with a .staticmethod macro
call that takes the string name of the static method as argument. Creating
a Val Str object in Python will occur the same way as is done in C++ – by
calling the mk method.

The P2 Python library uses Boost.Python to incorporate into Python
data types such as Dataflow, Plumber, Tuple, Table, Iterator, and C++ vec-
tors of Value types. If you are programming a new Element class and wish
to incorporate that element into Python you must follow these steps.

• Use the class template to generate the Python definition of your new
Element.

• The class definition of your new Element should be placed in a func-
tion definition, that takes void and returns void, and is defined in the
respective ’python/p2’ subdirectory in a suitably named ’.cpp’ file.

• Add your ’.cpp’ file to the Makefile.am file within the chosen ’python/p2’
subdirectory.

• Add your function prototype to the ’python/p2/p2python.cpp’ file and
call the function from within the BOOST PYTHON MODULE(libp2python)
block expression.

There are many examples within the ’python/p2’ directory of adding P2
Elements to the Python module in the above fashion. The next section
describes how to use the P2 Python module in a Python environment.

3.3 P2 Python Programming

The ’libp2python.so’ shared object is created after successfully compiling
the ’python’ directory structure. This shared object is what the Python
interpreter loads when importing the P2 module. The P2 module contains
all the data structures defined in the ’python/p2’ subdirectories using the
class template. The following is an example python session that creates a
Plumber and installs a Dataflow containing two Elements.

9

Python 2.3.4 (#1, Feb 2 2005, 12:11:53)

[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import libp2python # Import the P2 module

>>> libp2python.eventLoopInitialize() # Initialize the event loop

>>> plumber = libp2python.Plumber()

>>> dataflow = libp2python.Dataflow("test")

>>> timed = dataflow.addElement(libp2python.TimedPushSource("timed", 0))

>>> discard = dataflow.addElement(libp2python.Discard("discard"))

>>> dataflow.hookUp(timed, 0, discard, 0)

>>> plumber.install(dataflow)

0

>>> libp2python.eventLoop() # Run the event loop

The thing to note in the above example is that the method names and
arguments follow the respective C++ class definitions. Once a Dataflow has
been installed into the Plumber you can run it by calling the eventLoop
routine as shown in the above example. The ability to create and install
arbitrary Dataflow instances allows one to encode the logic that determines
the Element connections in the Python Programming language. The new P2
Dataflow Language is one example Python program that compiles a high level
dataflow language into calls that create a Dataflow instance in accordance
to the language specification.

3.3.1 Defining P2 Elements in Python

This section assumes you have access to the ’python/p2/p2core/element.cpp’
code file, found in the P2 system directory. Given the ability to code the
logic that creates, installs, and runs a Dataflow instance the P2 programmer
need only write C++ code to create or modify P2 Element and Value types.
Another option allowed by the P2 Python library is to write a P2 Element
as a Python class, which is the topic of this section.

The Element class is defined differently in the P2 Python module to al-
low for the definition of Element classes in Python. The ’element.cpp’ file
contains the C++ Element Python definition. However, instead of inheriting
directory from the Element class, the class template inherits from the Ele-
mentWrap class definition (also defined in ’element.cpp’). The ElementWrap
C++ class overrides the methods of the Element class in order to provide a

10

dynamic dispatch to the respective overridden methods in the Python class
instance. That is, a Python class that inherits from the Element class will
actually inherit from the ElementWrap class, which automatically invokes
any methods that the Python class overrides. Since the C++ compiler is
unaware of the Python class definition, it will call the overridden methods of
the ElementWrap class, which will in turn invoke the Python interpreter to
call the respective overridden Python method. If the Python class doesn’t
override a particular method then the ElementWrap class will invoke the
method defined in the parent Element class.

The only known limitation of Boost.Python is the ability to pass a func-
tion from Python to C++, and have that function be called from within
C++. Given that callbacks are an intricate part of Element code, the Ele-
mentWrap class defines a few extra methods that the Python Element pro-
grammer can use. The following list the of methods or provided by the
ElementWrap class definition.

TuplePtr py pull(int port, object callback) – Calls pull on the upstream
element on the given port. If the upstream Element blocks further calls
a dispatch will be issued on the passed in callback method when further
tuples can be pulled.

int py push(int port, TuplePtr tp, object callback) – Calls the push
method of the downstream element on the given port. If the down-
stream element blocks further calls a dispatch is issued on the passed
in callback method when further tuples can be pushed.

timeCBHandle* set delay(double secondDelay, object callback) – Calls
the delayCB method. When the secondDelay expires a dispatch will
occur to the Python method specified passed to the callback formal. A
timeCBHandle* object is produced, which can be used to cancel the
timer using the cancel delay method (described below).

void cancel delay(timeCBHandle*) – Cancels the outstanding delayed
callback.

Other methods exist in ElementWrap to provide the dynamic dispatch capa-
bility needed to call from C++ back into Python. The callback formal in
the above methods specifies the method, defined in your Python class, that
is to be called by the dispatch method of the ElementWrap class. The dis-
patch method will not provide arguments to the Python method at call time.

11

If your callback requires the use of arguments then you should use wrap it
inside of a Python lambda function that will pass it the required arguments
at call time.

3.3.2 Example P2 Element class in Python

class Terminal(Element):

def __init__(self, name):

Element.__init__(self, name, 1, 1)

self.self(self) # Pass the ElementWrap class a reference to the self object.

def class_name(self): return "Terminal"

def processing(self): return "h/h"

def flow_code(self): return "-/-"

def initialize(self):

self.timer = self.set_delay(0, self.delay_callback)

return 0

def callback(self, port):

self.timer = self.set_delay(0, self.delay_callback)

def delay_callback(self):

Read string from terminal and send

it in a tuple to push output port 0.

line = raw_input("P2 Terminal >> ")

t = Tuple.mk()

t.append(Val_Str.mk("terminal"))

t.append(Val_Str.mk(text))

t.freeze()

if self.py_push(0, t, self.callback) > 0:

self.timer = self.set_delay(1, self.delay_callback)

def push(self, port, tp, cb):

Received some tuple on input port 0

return 0

The above Terminal class is written entirely in Python and can be linked
into a P2 Dataflow instance. The class overrides the initialize method to
set a delayed callback using the set delay method defined in the Elemen-
tWrap class. The timeCBHandle is stored in the self.timer variable, which
can be used to cancel the timer using the cancel delay method. When
the P2 event loop calls the callback associated with this timer it will in-
voke the ElementWrap::dispatch method, which will in turn invoke the

12

delay callback method defined by the Python Terminal instance. The de-
lay callback method in the Terminal class definition reads a line from stdin,
creates a tuple containing the text, and sends the tuple to its output port 0
using the py push method provided by the ElementWrap class. The Ele-
mentWrap::py push method invokes pushes the tuple to the output port
0, which passes the callback method as the callback function argument. The
remaining code in this Python class definition should be self explanatory.

4 P2 Dataflow Language (P2DL)

A P2DL description defines a set of P2 elements and specifies how those
elements should be hooked up to form a dataflow graph. The language
specifies two types of dataflow specifications, which are named dataflow
and edit. A dataflow specification defines a stand alone dataflow graph
that is to be installed in the Plumber. An edit specification indicates how
the elements in a running dataflow should be rewired to incorporate new
elements and/or remove old elements. The edit specification also includes
a mechanism for dynamically adjusting the input and output ports of an
element that supports such modifications. The language also permits the
use of macros that allow the programmer to specify a dataflow that can then
be used like a regular element in dataflow or edit specifications.

A dataflow description is made of up any number of macro specifications,
and either a single dataflow or edit specification. The basic terms that make
up a dataflow description are given in Table 4. A dataflow description is
terminated with a single period at the end of the file. Perl/Python style
comments are supported in the description by using # to ignore the remaining
characters on a single line. In the remainder of this section we describe P2DL
dataflow and edit specifications using simple grammars and examples. The
grammar descriptions will reference the terms given in Table 4.

4.1 Dataflow Specification

A dataflow specification describes a standalone dataflow graph that is to be
installed in a Plumber. The following is a simplified grammar of a dataflow
specification.

13

Table 1: P2DL Terms

comment All characters on a single line following #
numeric Both integer and float syntax is supported.
string Any set of characters (except new line) wrapped

in double quotes.
variable Begins with a lower case alpha character

and ends in any number of alphanumeric characters.
reference Begins with a single ”.” followed by any number of

variables separated by a ”.”.
DataflowType Begins with an upper case alpha character

and ends in any number of alphanumeric characters.
ElementType Begins with an upper case alpha character

and ends in any number of alphanumeric characters.
LINK Specified using the arrow (→) syntax.
P2 Value Any type that begins with ’Val ’ results

in the creation of a P2 value type.
P2 Value Vector List of P2 Values separated by commas

and enclosed in brackets

14

’dataflow’ <DataflowType> {

(assignment;)*

(strand;)+

}

. # END OF PROGRAM

The declaration of a dataflow requires a DataflowType for naming the
dataflow that is installed into the Plumber. Naming a dataflow allows for
later edits to the dataflow once it has been successfully installed into the
Plumber. The dataflow graph description is enclosed within the brackets,
and consists of a zero or more assignments and one or more dataflow strands.
An assignment binds a variable to a P2 Element declaration and has the
following syntax.

assignment := ’let’ <variable> ’=’ <ElementType>’(’ <arguments> ’);’

The scope of the variable is within the dataflow specification following
the point at which the variable is declared and initialized. Specifically, the
above grammar binds a variable to an ElementType that can then be used
in a dataflow strand to hookup the element. It is possible to bind any object
type to a P2DL variable. However, for the purposes of creating dataflows
and edits, you need only bind variables to elements in order to reference the
bound element more than once in a dataflow strand 2

A strand defines how a set of elements are to be connected in the dataflow.
A strand has the following simplified grammar.

strand := <element_expression> (’->’ <element_expression>)+;

An element expression can be either the declaration of a new P2 Element
or a variable defined by an assignment statement. The element expression
can indicated the input/output ports that are to be hooked up by the strand
statement. If a port is not given then the hookup defaults to port zero. The
following give a simplified grammar of an element expression and port.

element_expression :=

(port)?

(<ElementType> ’(’ <arguments> ’)’ | <variable>)

(port)?

port := ’[’ (<numeric> | <P2 Value>) ’]’

2This is needed for elements with many input/output ports.

15

4.2 Defining and Linking P2 Elements

An element is defined by specifying the element type and any arguments
required by the element constructor. Connecting two elements together is
indicated by a LINK. The following demonstrates creating and hooking up
of two elements (TimedPushSource and Discard).

dataflow Foobar {

TimedPushSource("source", 1)[0] -> [0]Discard("discard");

}

. # END OF PROGRAM

The dataflow description shown above specifies a valid dataflow graph
containing two elements. The name of the dataflow is ’Foobar’ and can be
referenced under that name in an edit description (see Section 4.4). The ele-
ment ’TimedPushSource’ is initialized with two arguments, the first being the
name of the element and the second indicating the tuple generation frequency.
These arguments are defined by the ’TimedPushSource’ element constructor.
The ’Discard’ element constructor takes a single argument, which is the name
of the element. The elements are hooked up by linking the output port 0 of
the ’TimedPushSource’ element to the input port 0 of the ’Discard’ element.
The following sections describe these operations in more detail.

4.2.1 Declaring P2 Elements

An element is declared by specifying the ElementType and any constructor
arguments defined by the actual P2 element class. The argument types of a
P2 element include numeric (int or float), string, P2 values, and a C++ vector
of P2 values. All of these types are supported in the P2DL. The support for
P2 values and vector of P2 values will be described in Section 4.2.4.

The first argument of a P2 element constructor is always the name the
element. Under the general P2 architecture the element name can be an
arbitrary string. However, when using P2DL, in order to reference the ele-
ment in an edit the name of an element must follow the variable syntax (see
Table 4 and be wrapped in double quotes.

4.2.2 Hooking up P2 Elements using dataflow strands

In the P2 architecture, elements are connected by linking together an output
port of one element to an input port of another element. The P2DL uses

16

the array syntax for specifying the port of an element. For instance, in the
’Foobar’ dataflow example, ’[0]’ indicates port 0 on the output of ’Timed-
PushSource’ and the input of ’Discard’. The array syntax is optional and
defaults to port 0 if not specified. The following ’Foo’ dataflow description
is equivalent to the ’Foobar’ dataflow given above.

dataflow Foo {

No port specified defaults to port 0

TimedPushSource("source", 1) -> Discard("discard");

}

.

A dataflow strand is a series of P2 elements and LINKs specifying how the
element ports should be connect. Each strand begins and ends with a single
P2 element and is terminated using a ’;’. The input of the first element and
the output of the last element are not specified in a single dataflow strand.
Another consequence of a strand is that at most 1 input and 1 output of an
element declaration can be specified in a single strand. Some elements require
the configuration of multiple input/output ports, which can be supported by
declaring an element variable in the dataflow block.

4.2.3 Declaring local variables using assignments

The examples so far only provide the ability to configure at most a single
input and output port of a P2 element. Local variables provide a way to
reference a P2 element in multiple dataflow strands, thereby permitting the
configuration of any number of input/ouput ports. A local variable is defined
using a ’let’ statement, as shown below.

dataflow Bar {

Define local variable mux

let mux = Mux("mymux", 2);

TimedPushSource("source1", 1) -> [0] mux[0] -> Discard("discard");

TimedPushSource("source2", 1) -> [1] mux;

}

.

17

4.2.4 P2 values and vectors of P2 values

The P2 architecture defines a set of values that some elements require during
initialization. A P2 value begins with ’Val ’ and ends with the type name
(e.g., Int32, Double, etc.). Simply specifying a P2 Value type in a let state-
ment or as an argument to some element constructor will create such an
object. The language also supports C++ vectors of P2 values, specified by
series of P2 value declarations (separated by a comma) with brackets. The
following example illustrates the the creation and usage of P2 values in the
P2DL.

dataflow Val_Type_Example {

let vec = {Val_Str("localhost:10001"), Val_Str("localhost:10002")};

let demux = Demux("ip_demux", vec, 1);

Udp("receive", 10000) -> Bandwidth("bw", Val_Double(5.0)) -> demux;

demux[0] -> Print("receive_10001") -> Discard;

demux[1] -> Print("receive_10002") -> Discard;

demux[2] -> Print("receive_unknown_port") -> Discard;

}

.

The first assignment in the ’Val Type Example’ dataflow binds the ’vec’
variable to a C++ vector containing two value strings. The ’vec’ variable
is passed to the second constructor argument of the ’Demux’ element in the
second assignment statement. The ’Bandwidth’ element in the first dataflow
strand requires a P2 double value in its second constructor argument, which
will be passed a ’Val Double’ object set to 5.0.

4.3 Macro Specification

The macro construct is used for defining language level elements out of a
dataflow description. A macro designates a single element to be the input
and a single element to be the output of the macro. The behavior of a macro
is very similar to macros used in the C pre-processor, with the addition of
input/output elements and a restriction on the first formal of all macros 3.

3Local variables can be defined in a C macro, and are properly scoped.

18

The following macro definition will be used to describe the salient aspects of
this construct.

macro Conn(name, port) {

let cct = CCT("transmit_cc", 1, 20);

let udp = Udp("udp", port);

let printer = Print("printer");

input cct; output printer;

cct -> Print("send_printer") -> MarshalField("marshal", 1) -> udp;

udp -> UnmarshalField("unmarshal", 1) ->

[1]cct[1] -> printer;

}

.

Like the dataflow construct, a macro consists of zero or more local vari-
ables and 1 or more dataflow strands. A macro also requires macro arguments
and the specification of an input element and an output element.

4.3.1 Macro Formals

The macro formals follow the macro name and consist of a list of variables
separated by commas and enclosed in braces. The first formal of every macro
must be titled ’name’. To refer to elements in a macro by a reference (i.e., in
a dataflow edit) you will need to specify the given macro name followed by ”.”
followed by the remaining name. References to objects in a dataflow will be
discussed in Section 4.4. The remaining formals can be used as arguments
to various elements defined in the macro. For instance, the macro Conn
shown above defines a port formal that is used in the argument to the Udp
element. There is no limit on the number of macro formals.

4.3.2 Macro Input/Output

Each macro can designate an element to be an input and an (possibly an-
other) element to be an output. The element designated as the input will be
used when hooking up (linking) the input port(s) of the macro, and similarly
for the output element. In the future, we may allow for multiple input/output

19

elements but until then see if elements such as a Demux or RoundRobin
for input and a Mux for the output satisfy your needs.

4.4 Edit Specification

The edit construct is used for rewiring the elements of an installed dataflow
graph. Permitting the ability to rewire a dataflow allows one to remove
old elements and/or incorporate new elements into the dataflow graph. The
following is a informal grammar to the edit specification.

edit <DataflowName> {

(assignment;)*

(strand;)+

}

Every edit begins with the keyword edit, followed by a DataflowName,
which must be the name of some dataflow that has already been installed
in the Plumber 4. The edit block is enclosed in brackets and contains zero
or more assignments and one or more strands. The syntax for assignments
remain the same but a dataflow strand is now able to references elements
of the dataflow being edited. A reference to an existing element must be
preceded by a single ’.’ in order to differentiate it from a local variable. The
following example illustrates an edit on a dataflow titled ’Main’.

edit Main {

.marshal -> Bandwidth("bw") -> .udp;

.cct -> .unmarshal;

}

.

The first strand in the ’Main’ edit rewires the output port 0 of the ex-
isting element named ’marshal’ to the input port 0 of a new ’Bandwidth’
element. The output port 0 of the new ’Bandwidth’ element is connected to
the existing element named ’udp’, which will result in a rewiring of the ’udp’
element’s input port 0. The second strand in the ’Main’ edit rewires the
output port 0 of the existing ’cct’ element to the input port 0 of the existing
’unmarshal’ element.

4Otherwise the Plumber will ignore the edit.

20

5 Incremental P2 Rule Installer

The primary contribution of this work is to provide an interface that allows
for OverLog rules to be installed at runtime. The incremental planner relies
on the P2 Python Library module and the P2 Dataflow Language modules
that were built in the course of this semester. Some modifications were made
to the native P2 runtime environment, most notably the support for dataflow
edits (as given by the Plumber::DataflowEdit class) and a few new elements
for transferring large files (Frag/Defrag), compiling OverLog (OverlogCom-
piler), compiling and installing a P2DL description (DataflowInstaller), and
establishing a dissemination tree over a set of P2 nodes (RemoteManager).
In the remainder of this section we first describe the base P2 stub that com-
piles and installs OverLog rules into a running Plumber. We then discuss
the Remote Manager element that was written for setting up a dissemination
tree over which OverLog rules could be injected into a population.

5.1 P2 Stub

To incrementally install a set of OverLog rules into a running Plumber a node
must have installed the dataflow depicted in Figure 2. The stub dataflow de-
fines a transport layer for receiving tuple data out of P2 network elements.
The tuples received by a P2 stub node can contain OverLog rules, a P2
dataflow edit script, Remote Manager messages, or data destined for some
installed rule. Edits are permitted on the transport layer itself but only
through a dataflow edit written in P2DL. The baseline transport layer de-
fines congestion control and fragmentation functionality. The fragmentation
support permits the sending of arbitrarily long OverLog programs to a node.
It is also possible to install other transport layer features (e.g., reliable deliv-
ery, order delivery, etc.) by either editing the Python script that generates
the stub or by sending an appropriate P2DL edit.

The rules of an OverLog program are compiled into a set of dataflow
strands [2] and dynamically installed into the dynamic demux and dynamic
round robin elements. The default port (port 0) of the dynamic demux
handles tuples that contain programs written in either OverLog or P2DL. A
tuple containing an OverLog program is compiled by the OverlogCompiler
element, which performs a call to the OverLog planner. The OverLog planner
is equipped to generate a P2DL script, rather than performing the actual
installation. This generated scripted is repackaged in a tuple and forwarded

21

!"#!$%&'()&* +&'()&*

",-'&.%,$/

01$.,(/21$
01$/'1*

+3*/24*,5,'

63,3,

!
"
#
$
%
&'
(!
)
%
*
+,
&-
+)
.
)
/

!
"
#
$
%
&'
(0
1
*
#
2
(0
1
3
&#

78,'*1.
01%42*,'

"&/&91:
;$(/&**,'

!$,$415(0*+)(6,/$#2

!$,$415(0*+)(6,/$#2

7(7(7

78,'*1.

#<"=>?@2/

#<"=>?@2/ A/&/3(

78,'*1.>
01%42*,'

#B/)1$
"&/&91:
01%42*,'

78,'*1.

#<"=>?@2/

#<"=>?@2/

A/&/3(

89(8+*%3)/

?@2/ A/&/3(

C'&.%,$/

01$.,(/21$
01$/'1*

",%3*/24*,5,'
D;#>E@@',((F

=1G&*>;#>E@@',((

H,%1/,>;#>E@@',((

89(:/$#;-1/,(<$")/

89(!$,$415(6,*3

H,%1/,>+&$&.,'

#1$.

A/&/3(

#2$.

78,'*1.

Figure 2: P2 stub node.

22

to the DataflowInstaller. The DataflowInstaller accepts tuples containing
P2DL edits, provided by the OverlogCompiler or from some outside source 5.
On receipt of a P2DL edit, the DataflowInstaller compiles the script using the
P2DL Python compiler, which returns a Plumber::DataflowEdit object. The
DataflowInstaller installs the returned Plumber::DataflowEdit object into the
running Plumber. The status of this installation is tracked at every step and
returned to the source.

5.2 Terminal Source

Section 3.3.2 described a Terminal element, written entirely in Python, for
packaging input from stdin in a tuple. We have extended this example el-
ement to accept input in the form of an OverLog program, and send the
program in a tuple to a P2 stub node. The element takes care of packag-
ing a program in the proper tuple format and reporting the status of the
installation returned by the stub node. A Remote Manager is built into the
P2 stub in order to compliment the Terminal process of disseminating an
OverLog program into a population. The Remote Manager and the process
of setting up a dissemination tree is further described in Section 5.3. Given
such a dissemination tree, the Terminal element need only inject the OverLog
program in the root of the tree in order for the program to be completely
installed in a population. Other installation strategies are possible, including
the installation of OverLog rules in a subset of the population.

5.3 Remote Manager

5.3.1 Overview

Running a P2 program on a large collection of nodes requires a system for
initially starting up the program and recovering from node failures, which
are common in real world deployments. To this end, a Remote Manager P2
element was written to start P2 stubs on other machines and monitor those
machines, restarting the stubs when the machines fail or reboot. The Remote
Manager element was written in Python using the P2 Python library.

5The OverlogCompiler will simply pass any tuple containing a P2DL program to its
output port.

23

5.3.2 Implementation

The Remote Manager element is used to establish and maintain a default
distribution tree for OverLog code installation into a group of nodes. One
node is selected as the root node and is seeded with a list of hosts to receive
the initial program and any subsequent updates. The root node removes
several machines from the beginning of the host list and designates them as
its children. It then sends a special “ping” message to those children to see if
they are alive and participating in the distribution tree (which, initially, they
are not). When a parent does not hear from one of its children, it restarts
the child by connecting to the remote machine and starting a stub P2 node
script that contains a Remote Manager element, and provides that Remote
Manager element with a list of nodes in that child’s subtree. The child then
selects its children from the list and the process repeats. Restarting a node
takes a significant amount of time (seconds), during which the single-threaded
P2 engine would drop incoming packets. Python implements threading, but
it is user-level threading, which does not work well with the non-yielding
C++ P2 engine. To solve this, a separate process is forked whenever a node
is re-started.

Periodically a node pings its children. When a child is running, it re-
sponds with a “pong” that includes the number of P2 rules it has received
from its parent. If the parent has rules that the child has not seen, it sends
the first unseen rule; this occurs both when new code is distributed and
when a failed node is restarted. The rule goes directly to the child’s Over-
Log Compiler element which, in addition to sending the compiled script to
the Dataflow Installer element, also sends all OverLog rules, in its log, to
the child’s Remote Manager element. The Remote Manager maintains a se-
quential log of all of these rules from the OverLog Compiler. When a child’s
Remote Manager sends a pong to its parent, it includes the current length
of its OverLog rule log.

To speed recovery after failure, when a child receives a new rule, it sends
an unsolicited pong with the new length of its OverLog rule log. If additional
rules are waiting for the child, the parent will detect this when it processes
the pong and send the next rule.

If a parent does not hear from its child due to network effects (the ping or
pong was lost), then the parent will erroneously try to restart the P2 stub;
however, this will harmlessly fail since the new P2 stub will try to open a
pre-established port number which is already owned by the currently running

24

P2 stub process and the new P2 stub will exit.

References

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click modular router. ACM Trans. Comput. Syst., 18(3):263–297, 2000.

[2] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In Proc. ACM SOSP, Oc-
tober 2005.

25

