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ABSTRACT
Distributed systems are hard to build, profile, debug, and test. Mon-
itoring a distributed system – to detect and analyze bugs, test for
regressions, identify fault-tolerance problems or security compro-
mises – can be difficult and error-prone. In this paper we argue
that declarative development of distributed systems is well suited
to tackle these tasks. We present an application logging, moni-
toring, and debugging facility that we have built on top of the P2
system, comprising an introspection model, an execution tracing
component, and a distributed query processor. We use this facil-
ity to demonstrate a range of on-line distributed diagnosis tools
that range from simple, local state assertions to sophisticated global
property detectors on consistent snapshots. These tools are small,
simple, and can be deployed piecemeal on-line at any point dur-
ing a system’s life cycle. Our evaluation suggests that the overhead
of our approach to improving and monitoring running distributed
systems continuously is well in tune with its benefits.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed Sys-
tems—distributed applications; D.4.7 [Operating Systems]: Or-
ganization and Design—Distributed systems; C.2.2 [Computer Com-
munication Networks]: Network Protocols—protocol architec-
ture, routing protocols

General Terms
Design, Experimentation, Languages

Keywords
Declarative overlays, distributed monitoring, distributed debugging,
invariant checking

1. INTRODUCTION
Finding faults in large-scale distributed systems is hard, be they

caused by program bugs, security compromises, unexpected inter-
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actions among components, performance anomalies, or infrastruc-
ture failures. In this paper, we progressively investigate a method-
ology and toolset for building distributed systems that can be mon-
itored, debugged, and diagnosed on-line throughout their lifecycle.

Faults in large, widely-distributed systems manifest themselves
very differently from those in centralized systems. Faults are often
partial, intermittent, and may result in anomalous behavior rather
than failure. In addition to the common fault sources of program-
mer errors, system design flaws and hardware failures, distributed
systems are afflicted by complex network failures, emergent (mis)
behavior, denial-of-service attacks on the infrastructure, or com-
promise and subversion of one or more nodes by malicious adver-
saries. In addition, diagnosing or even recognizing a problem re-
quires identifying and correlating relevant information from many
different nodes.

In prior work with the P2 system [19], we demonstrated some
of the advantages of building distributed systems by expressing
the network-oriented functionality of a distributed application as a
set of continuous queries over program and external network state.
These queries are translated into an efficient distributed dataflow
graph, providing the ability to specify distributed systems behavior
concisely while retaining acceptable performance.

The contribution of this paper is an important extension of the
P2 approach that was not explored in our earlier work: using query-
processing for detecting (and in some cases reacting to) faults, anoma-
lies, and potential security vulnerabilities. To realize this goal, we
extend P2 to integrate its distributed continuous query processor
with a comprehensive introspection model and a sophisticated fa-
cility for execution tracing of P2 programs.

1.1 Diagnostic vs. diagnosable systems
P2, the system we discuss in this paper, blurs the distinction be-

tween a diagnostic system (that is, a system whose purpose is to
monitor and diagnose a distributed system) and what we might call
a diagnosable system, by which we mean a system designed from
the outset to be amenable to both new and existing monitoring and
fault-finding techniques. As such, it highlights the fallacy of char-
acterizing systems as either one or the other. Thinking of them as
separate inevitably leads to a certain impedance mismatch, because
the languages and abstractions used to specify the system and to
specify diagnostic queries about the system are not the same.

In P2, distributed algorithms are specified at a high level in a
declarative language, which is then translated into a dataflow graph
and directly executed. As we will illustrate, by retaining and rep-
resenting the details of this translation via a reflection model, P2
is a highly diagnosable system. The high-level algorithm descrip-
tion can be automatically instrumented, causing appropriate trac-
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ing, logging, and checkpointing to occur in the low-level dataflow
representation.

However, at the same time P2 is a highly effective diagnostic sys-
tem. It is at heart a distributed continuous query processor, which
provides a concise, powerful, and intuitive way to express the kinds
of operations necessary to monitor large networked systems and
find faults on-line.

P2 presents a very different view of how to construct distributed
systems, when compared to the common approach of defining and
implementing low-level protocols: message formats and events in a
language like C++ or Java. We advocate the P2 approach precisely
in order to make the process of detecting faults, bugs, compromises
and the like easy and natural, throughout the system’s lifetime. This
is because we believe that this process currently represents the most
involved and costly aspect of designing, implementing, deploying,
and operating a widely-distributed system.

1.2 Methodology
Any work on fault-finding techniques, particularly in on-line dis-

tributed systems, faces the difficulty of evaluation. Such techniques
and facilities are only important for finding non-obvious faults (whether
they be bugs, compromises, or failures), and most faults tend to be
obvious in retrospect. How, then, should one demonstrate the value
of a system feature in finding faults?

User studies work well when assessing the effectiveness of new
tools applied to existing systems with real users and operators.
However, the user study approach does not work well for evaluating
a conceptually new way of constructing and diagnosing distributed
systems, like P2. There is a chicken-and-egg problem here: a rig-
orous user study requires that the system be usefully deployable,
with a ready community of users, which is rarely the case with a
radically new toolset.

In this paper, we address this dilemma by first illustrating the
ease of applying existing fault monitoring and diagnosis techniques
on-line to distributed applications built over P2. For instance, we
use the Chandy-Lamport algorithm to take consistent snapshots [5],
and we show how queries over these snapshots can be easily for-
mulated to verify global invariants and properties.

We then show that the overhead of applying such techniques is
sufficiently low that, in many cases, queries to monitor particular
conditions in the system can simply be left in place permanently.
Thus, the system enables continuous monitoring of important con-
ditions, aiding in the early detection and diagnosis of algorithmic
or performance anomalies, as well as the detection and analysis of
software bugs that rarely manifest themselves.

1.3 Usage scenarios and motivation
In this paper, we describe P2’s fault diagnosis functionality and

give examples of its use. Orthogonal to these examples, however, is
the usage methodology within which they are deployed. The com-
bination of distributed continuous query processing, introspection,
and execution tracing leads to a variety of usage models, which we
briefly outline here. This serves as motivation for P2’s approach to
monitoring and fault diagnosis.

The first scenario is simply querying program state and logs.
This analysis is best expressed as a query, since a respectable query
language can subsume most of the semantics of the ad hoc scripts
programmers tend to write at present. Centralized management
systems already provide this functionality: for example, IBM’s
Tivoli console allows the operator to write Prolog programs to per-
form continuous queries over management state. A scalable dis-
tributed query processor enables this approach to be used on-line:
logs and state can be queried in place.

This leads naturally to the question of what information should
be logged by a program. Developers must typically insert logging
statements at compile time, which may be turned on or off later. In
contrast, a comprehensive introspection model allows the “what”
to be identified as a continuous query on-line, while taking care
of the how automatically without the need for a programmer to
insert “printf”s where they think is best. Combined with execution
tracing in P2, this largely obviates the need for manual (and often
error-prone) insertions of logging statements and post processing
of logs (e.g., to find the causality relation between logged events).

In addition to querying conditions interactively, a continuous
query processor allows a developer or operator to install persistent
distributed watchpoints and triggers in the system, which generate
events (as tuples) when a particular distributed condition occurs.
Such watchpoints have many uses. Some can function as intrusion
detection measures, for example to signal the probable compro-
mise or subversion of part of the system. Alternatively, watchpoints
installed during debugging can be left permanently in the system
as an evolving set of on-line regression tests. Furthermore, such
watchpoints are not limited to triggers when particular conditions
occur. Distributed queries can be installed to perform continuous
on-line performance profiling of the system.

The results of such watchpoints, derived from program state,
logs, and execution traces of the distributed system, are themselves
tuples which in turn can be the subject of queries. This leads to
higher-order automatic tracing of distributed execution, whereby
the system can be programmed to react to events by installing new
triggers itself, for example to provide more detailed information
about a particular area of the system. In this way the query pro-
cessor provides a powerful building block for autonomic system
operation.

In the next section we review the architecture of P2, and de-
scribe the aspects of the system new to this paper: the introspection
model, and the distributed execution tracing facility. Following this
in Section 3, we provide a series of concrete usage examples of this
functionality in the context of a P2 implementation of the Chord
lookup system. In Section 4 we quantify the performance cost of
these facilities. After this, we review related work and conclude.

2. P2 AND SYSTEM MONITORING
P2 is a system for implementing and executing distributed algo-

rithms, particularly for overlay routing and forwarding. We start
with a brief overview of P2; for a detailed description see Loo et
al. [19].

P2 is based on a relational model. Tuples are used to represent
the state of the system in the form of soft-state tables on each par-
ticipating node. For instance, out-links in a routing table might be
represented by rows of the form [my address, neighbor address,
link weight].

Tuples are also used to represent messages between nodes in the
system. On each node, P2 instantiates a software dataflow graph
(much like Click [17]) to implement an application’s distributed
algorithm. This graph is traversed by incoming message tuples,
and its elements are C++ objects implementing relational opera-
tors (database joins, selections, projections, aggregations) as well
as queues, multiplexers, etc. Executing this graph results in tuple
transmission over the network, and/or insertion into local tables.

Applications using P2 can create such a dataflow graph explicitly
using an embedded language, but P2 provides a higher-level query
language to do this. This casts the distributed routing state of an ap-
plication’s overlay network as a database view over the underlying
network state, and maintaining this view over time as the execu-
tion of a continuous, distributed, relational query. This approach
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Figure 1: Dataflow for the “all routes” rule. Rectangular boxes
are dataflow elements, “drum” boxes denote tables, arrows de-
note flows, and dashed boxes are for illustration purposes only,
delineating the piece of a dataflow that corresponds to a partic-
ular rule.

enables the properties of a routing algorithm for an overlay to be
specified extremely concisely [19], and it is this mode of usage of
P2 that we focus on in this paper.

P2 expresses queries in OverLog, a variant of the Datalog lan-
guage used in deductive databases. A query is a series of deductive
rules of the form

[ruleID] result :- preconditions.

interpreted as “the result is true when all preconditions are met.”
For example, in the following:

path(B,C,[B,A]+P,W+Y) :- link(A,B,W), path(A,C,P,Y).

the precondition is that the tables named link and path contain
entries in which the first respective fields match. When this occurs,
tuples for path are created for all values matching the input entries.
Interpreted logically, this rule says that if node A has a symmetric
network link of weight W to B, and node A has a path P to node C
with cost Y, then node B also has a path to C formed by prepending
the link [B,A] to A’s path to C, with cost W+Y.

Globally, this rule can (naı̈vely) build all routing paths from all
sources to all destinations. In practice, each individual node man-
ages only some of each table’s tuples. We use the convention that
the first field of a tuple denotes where the tuple lives. When the rule
above triggers, the resulting path tuple must be sent to the address
in its first field, where it is inserted in the local path table. For
clarity, OverLog allows link@A(B,W) instead of link(A,B,W).

Applications specify the tables they require using materialize.
The arguments to this construct are the name of the tuple, maximum
lifetime of a tuple, maximum number of tuples that can be in the
table at any time, and the primary keys of the table in a keys(...)
argument. The keys(...) argument contains, in order, the fields
of the tuple that form the primary key of the table, that is, uniquely
identify a tuple within the table. For example, the constructs

materialize(link, 100, 5, keys(1)).
materialize(path, 100, 5, keys(1,2)).

signify that both link and path tables contain at most 5 tuples at
a time, expire tuples after 100 seconds, and uniquely identify their
tuples by the first field for table link and by the first then second
fields in table path.

A P2 component called the planner translates the rule above to
the dataflow in Figure 1, consisting of a network preamble, a num-
ber of rule strands produced for each OverLog rule, and a network

postamble. The preamble is responsible for receiving tuples, un-
marshaling them, queuing them for processing, and then demulti-
plexing them among the rule strands. The postamble marshals out-
put tuples and sends them to the appropriate destination (first tuple
field). The rule strands are translations of individual OverLog rules
into database query elements such as projection, join, and selection.

2.1 Introspection and Tracing
Since P2 represents application state using a relational model, it

is natural to provide introspection on P2’s own state in the same
way, and so make it available to be queried from OverLog. Most of
the state of a running P2 node (tables, rules, dataflow graph, etc.)
is reflected back to the system as tables, themselves queryable in
OverLog.

We extend this principle further to the logging of system events
such as arrival of a tuple or removal of a tuple from a table. Log en-
tries are tuples stored (more precisely, buffered) in P2 tables. This
provides a potentially very powerful monitoring facility: OverLog
queries can be written that express distributed conditions on P2
state, application state, and logs at the same time. We have found
querying P2 logs in P2 itself highly convenient for most system
functions.

The representation of both application and P2 state as queryable
P2 tables is relatively straightforward, and we do not address its
details further. In the rest of this section, we focus on a third level
of introspection provided by P2: tracing the execution of individual
OverLog rules, and following individual tuples as they flow through
the system and across the network.

2.1.1 Tracing tuples and rules
All dataflow element classes in P2 are “tappable”: any element

can be made to copy the tuples it sends along a particular dataflow
arc to an additional element. In the current implementation, a node
has a single such element, the tracer, which collects tuple handoffs
along all instrumented dataflow arcs.

Of course, such tapping of dataflow arcs has to be related to the
high-level query rules that generated the dataflow graph. Conse-
quently, the insertion of dataflow taps is performed by the planner
when it generates the graph. To capture execution at the rule level,
the planner must cause tuples to be traced entering a rule strand
(marking the beginning of a rule’s execution as its input event ar-
rives), exiting the strand (marking the completion of a successful
rule execution that produced a result), and any intermediate tuples
fetched from tables (marking the identification of rule precondi-
tions). These three types of tap are identified in Figure 2 by the
black boxes, and together are sufficient to reconstruct the chain of
computation following the triggering of a rule by an arriving tuple.

The tracer logs the results of these taps in a normalized P2 table
called ruleExec. Tuples in ruleExec capture a causal link be-
tween two tuples, one of which caused the creation of the other
via the application of a rule. “Cause” tuples are either trigger-
ing “event” tuples or precondition tuples used within the rule. A
ruleExec tuple contains (1) the local node identifier (since it may
be queried remotely), (2) the ID of the executed rule, (3) whether
the cause was an event tuple or a precondition fetched from a table,
(4) the “cause” tuple itself (be it an event or precondition), (5) the
corresponding output tuple (the “effect”) from the rule execution,
and finally (6) the observation times for the two recorded tuples.
For example, consider the OverLog rule:
r1 head@Z(Y) :- event@N(Y), prec@N(Z).

Figure 2 illustrates the dataflow execution of the rule, including
tracer taps. Suppose r1 executes at node n in response to a mes-
sage event@n(y) and with precondition prec@n(z), producing a
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Figure 2: Dataflow detail for the execution tracing example.
Black boxes denote times when a particular flow tap yielded
a particular result (the pictured tuple). Each shown tuple is
preceded by its local tuple ID.

single output tuple head@z(y) 1. Two rows will be added to the
ruleExec table at node n:
ruleExec@n(r1, event@n(y), head@z(y), ts, te, true)

ruleExec@n(r1, prec@n(z), head@z(y), ti, te, false)

where ts, te, and ti are the wall-clock times at which the rule exe-
cution starts, stops, and fetches its precondition in the join element
respectively. The former row captures the causal link between the
event tuple triggering rule r1 and the resulting tuple head@z(y),
while the second row captures the causal link between the precon-
dition prec@n(z) – whose existence allowed the rule to be satisfied
– and the same resulting tuple head@z(y). In practice, the head,
event and prec tuples are not stored directly in ruleExec, but
memoized using the tupleTable, described below.

The tracer correlates observed tuples on the tapped flows to infer,
from their ordering in time, when individual rules have completed.
To do this, it maintains an array of tracing records, one per rule in
the system (illustrated at the bottom of Figure 2). Each such record
stores the tuples observed, along with the time of observation, for
an entire rule strand. When an input tuple for a rule is observed, any
prior contents for the entire record are cleared, and then the input
is recorded by its tuple ID. Observed precondition tuples are stored
in the appropriate record field, however any filled-in record fields
to the right of the newly observed precondition are flushed. This is
because tuples flow through a rule strand from left to right (in the
figure), so the observation of a precondition in the “middle” of the
strand signifies that any prior observed preconditions belonging to
its right in the record and the strand are no longer relevant. Finally,
when an output tuple is observed, the entire record is packaged into
a ruleExec tuple and stored into the ruleExec table.

2.1.2 Pipelined execution
In the preceding description of rule tracing, for simplicity we

have assumed that rule strands run sequentially to completion; that
is, no new input tuple is let into a rule strand from the left before
all tuples in flight within the rule strand have exited to the right or
have been dropped. In this section we refine the machinery further
to accommodate pipelined execution.

In P2, certain elements access the state stored in tables to pro-

1Note here that in OverLog terms beginning with an upper-case
letter represent variables while those beginning with a lower-case
letter represent constants. Hence N is a node ID variable in the
example, whereas n is the ID of a specific node.
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Figure 3: Dataflow detail for pipelined execution tracing.
Black-filled fields in tracer records indicate fields that are not
associated with a particular tracer record. In the example, the
top record has only two fields associated with it (the last join
and output) while the bottom record for rule r2 has the first two
fields associated with it. This configuration would occur if the
first event has finished looking up matches in table prec1 and
is processing remaining matches in table prec2 while a subse-
quent event has started processing matches in table prec1.

cess incoming tuples. For instance, a join element takes a search
argument as input and looks into a table to find matches for that
argument, until it has emitted all matches. When it has found all
matches, the join element pulls another search argument from its
input.

Such elements potentially produce multiple outputs for a single
input. For example, consider rule r2 (see Figure 3):
r2 head@Z(Y) :- event@N(X), prec1@N(X, Y),

prec2@N(Y, Z).

When a new event arrives, rule r2 can be satisfied for all com-
binations of tuples prec1 and prec2 for which the first fields of
event and prec1 match, and the second field of prec1 and first
field of prec2 match. For every match found in the prec1 table,
all matches in the prec2 table are found and head tuples emitted.
Then another match in prec1 is found and the process is repeated
for prec2. When the last match in prec1 is found, rule r2 is ready
to be executed for a new event. In this case, the handling of a new
event through the join element for prec1 might be interleaved
with the remaining matches of the previous event through the join
element for prec2.

To handle pipelining, the tracer holds multiple tracer records per
rule strand, one for each stage in this pipeline (that is, for each
stateful element, such as joins). When a stateful element defining
an execution stage is complete (as indicated by its seeking a new
input), the tracer is signaled of the completion of the stage.

To execute the algorithm in Section 2.1.1, we must match signals
received by the tracer to specific tracer records. We do that by
associating each tracer record with a sequence of stages in its rule
strand, observing that only a single execution record can occupy
any one stage. So, when a stage i signals its completion, the record
(if any) whose associated stage sequence begins with i abandons
that stage, advancing its first associated stage to i + 1. If no such
tracer record exists, we extend the record with the latest associated
stages to contain stage i.

With the above signaling mechanism, we can now match the pre-
conditions and the output to appropriate records. When a new input
event is observed, we find a record that does not have any stage as-
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sociated with it. If no such record exists, we create a new one and
associate it with the first stage. Similarly, when an element at stage
i provides a precondition, we find the record with which stage i
is currently associated and post the precondition appropriately. Fi-
nally, when an output tuple is generated, it is matched to a record
with the highest associated stage.

2.1.3 Tracing rules across the network
The tracer as described so far can capture all executions of a

particular rule on each node, and make such traces available for
distributed querying using OverLog. This is not quite sufficient to
implement distributed tracing of execution: what is also needed is
a way to relate the output of a rule on one node to the triggering
of a rule on another. This amounts to tracing the sending of tuples
between nodes.

Each P2 node assigns tuples a node-unique ID when they are first
created (tuples are immutable in P2). This ID is used to memoize
the tuple, and it is this ID that is stored in the ruleExec table rather
the tuple itself.

The mapping from tuple IDs to tuples is kept in a second table
available to P2 queries: the tupleTable, which holds (1) the tuple
ID, (2) a source address for tuples that arrived from another node,
together with (3) the ID of the tuple on the source node, and (4)
the destination address for tuples that have been sent across the
network.

At the node n in our example, the tupleTable would contain
the entry tupleTable@n(o1, n, o1, z), indicating that it orig-
inated locally (with ID o1) and was sent to z. Assuming it was
received, a tuple with the same content would also appear in z’s ta-
ble as tupleTable@z(d1, n, o1, z) for some z-local tuple ID
d1. tupleTable tuples are not themselves described within the
tupleTable.

We use reference-counting to flush old tuple records from those
currently held in tupleTable. In practice, this means that an entry
is discarded when the last referring entry in ruleExec is removed
or times out.

Next we discuss various usage scenarios for P2’s combination of
distributed query processing, introspection, and execution tracing
facilities. In Section 4, we evaluate the overhead to these mecha-
nisms when used in practice.

3. APPLICATIONS
We start with a few simple case studies, in which we examine

common monitoring tasks that ensure routing consistency (Sec-
tion 3.1) in overlays. Next, we describe larger, more complex mon-
itoring tasks that may apply to diverse problems, including func-
tional profiling (Section 3.2), and taking consistent snapshots of a
running system (Section 3.3). Our objective in this section is not
to discover new improvements for overlays, but to cast some of the
techniques that researchers have previously employed for the task
in the context of P2.

All examples refer to an implementation of Chord [23] on P2.
We present the relevant features of the P2 Chord implementation as
needed. It is worth pointing out, however, that our features are not
specific to Chord in particular or distributed hash tables in general,
but apply equally well to other algorithms with distributed state and
control.

3.1 Consistent Routing
In a distributed lookup service, routing consistency is the prop-

erty of answering the same lookup with the same result at the same
time, regardless of who is asking. It is an important property to

approximate in DHTs since it exemplifies the hash table metaphor:
you get what you put in, as if the system were implemented with a
centralized hash table.

In the following examples, we give progressively more complex
detectors for invariant violations that degrade routing consistency
including malformed ring topology (Section 3.1.1), incorrect ID
ordering on the ring (Section 3.1.2), and the use of stale routing
state during lookups (Section 3.1.3). We conclude the section with
an active detector for routing inconsistency itself (Section 3.1.4).

3.1.1 Ring is Well Formed
Inconsistent routing may occur due to a pathological topology.

The Chord DHT relies for its correctness on the correct mainte-
nance of a ring among all of its members, in which (a) every node
has exactly one immediate successor and predecessor, and (b) every
node is its successor’s predecessor and it’s predecessor’s successor.
If the ring is incorrect, then depending on where a lookup starts, it
may return a different response.

Active Probing: To detect incorrect ring maintenance of this
type, for example, a node can periodically ask its immediate prede-
cessor for its immediate successor. If the response does not match
the probing node itself, then there must be a ring flaw between the
prober and the node it considers its immediate predecessor.

In the following OverLog snippet, rule rp1 periodically2 (with
period tProbe) finds its predecessor (in the pred tuple), checks
that it is non-empty (different from "-"), and sends a request for
that predecessor’s immediate successor. Rule rp2 handles such re-
quests by finding the current immediate successor (in the bestSucc
tuple, containing the local address, and the successor’s ID and ad-
dress), and returning it to the requester. Finally, rule rp3 handles a
response to such a probe, checking that it came from the node’s pre-
decessor, and raising an alarm tuple called inconsistentPred if
the successor returned by the predecessor does not match the local
node’s address.

rp1 reqBestSucc@PAddr(NAddr) :- periodic@Naddr(E,
tProbe), pred@NAddr(PID, PAddr), PAddr != "-".

rp2 respBestSucc@ReqAddr(NAddr, SAddr) :-
reqBestSucc@NAddr(ReqAddr), bestSucc@NAddr(SID,
SAddr).

rp3 inconsistentPred@NAddr():-
respBestSucc@NAddr(PAddr, Successor),
pred@NAddr(PID, PAddr), Successor != NAddr.

Similar rules can also check that a node is its immediate successor’s
predecessor.

Passive Checks: In contrast to actively sending requests that
help ascertain that the ring is well-formed, a designer could also
use passive detection rules that take advantage of Chord’s message
semantics without generating new messages.

For example, Chord employs a periodic process called stabiliza-
tion – interestingly, for the exact purpose of maintaining a well-
formed ring – during which a node sends a stabilizeRequest

message to its immediate successor. Since the semantics of this
message is that nodes send it to their immediate successors, the re-
cipient can apply the same logic as rule rp3 above: “if the sender
of this message is not my immediate predecessor, we have an in-
consistent ring link.” This is what rule rp4 below does.

rp4 inconsistentPred@NAddr() :-
stabilizeRequest@NAddr(SomeID, SomeAddr),
pred@NAddr(PID, PAddr), SomeAddr != PAddr.

2periodic@N(E, T) is a built-in event that becomes true every T
time units at node ID N with a random nonce E.
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The down side of this approach is that detection of inconsistencies
occurs at the rate at which stabilizeRequest messages arrive,
rather than the arbitrary rate tProbe used in the example of rules
rp1-rp3.

3.1.2 Ring ID Ordering is Correct
Even when the ring is well formed topologically, it may be incor-

rect from the point of view of node ID semantics. Chord requires
that nodes are arranged on the ring according to their ID ordering.
A node’s immediate successor should be the node with the next
higher ID in the entire population, and its immediate predecessor
should be the node with the next lower ID.

Opportunistic Checks: It is straightforward to write oppor-
tunistic passive checks that flag an ID inconsistency whenever a
node ID borne by any incoming message falls between the local
node’s predecessor’s ID and the local node’s successor’s ID. For
example, the following rule checks Chord lookup responses, con-
tained in lookupResults tuples. These tuples carry the local node’s
address, the key looked for, the result node ID and address, the
lookup request number, and the sender’s address.

ri1 closerID@NAddr(ResltNodeID, ResltNodeAddr) :-
lookupResults@NAddr(Key, ResltNodeID,
ResltNodeAddr, ReqNo, RespAddr), pred@NAddr(PID,
PAddr), bestSucc@NAddr(SID, SAddr), ResltNodeID
in (PID, SID).

When such a result tuple arrives at a node, the node’s immediate
successor ID (in a bestSucc tuple) and its immediate predecessor
ID (in a pred tuple) are fetched. If the node ID in the result tuple
happens to be between the two immediate neighbors’ IDs (checked
by the in expression at the end of the rule), then a closerID event
is issued identifying the node and ID that seem to violate the check.

Traversals: In addition to the previous largely localized checks,
more sophisticated detection processes are simple to define. Viewed
holistically, in a full ring traversal along immediate successor links
there should be a single ID “wrap-around” (that is, a drop in the
absolute value of the traversed IDs). To check this invariant, a
token-passing scheme can be used in which, starting from a ran-
dom node, a token traverses immediate successor pointers counting
wrap-arounds. If at the time of reaching its origin, the traversal has
identifier more than one wrap-around (or worse, fewer than 1), then
something must be wrong in the ring. The following rules encode
this distributed check.

ri2 ordering@NAddr(E, NAddr, NID, 0) :-
orderingEvent@NAddr(E), node@NAddr(NID).

ri3 countWraps@NAddr(SAddr, E, SrcAddr, SID, Wraps)
:- ordering@NAddr(E, SrcAddr, MyID, Wraps),
bestSucc@NAddr(SAddr, SID), MyID < SID.

ri4 countWraps@NAddr(SAddr, E, SrcAddr, SID, Wraps
+ 1) :- ordering@NAddr(E, SrcAddr, MyID, Wraps),
bestSucc@NAddr(SAddr, SID), MyID >= SID.

ri5 ordering@SAddr(E, SrcAddr, SID, Wraps) :-
countWraps@NAddr(SAddr, E, SrcAddr, SID, Wraps),
SAddr != SrcAddr.

ri6 orderingProblem@SAddr(E, SrcAddr, SID, Wraps)
:- countWraps@NAddr(SAddr, E, SAddr, SID,
Wraps), Wraps != 1.

The traversal occurs via a token tuple ordering. Token fields are
the local node address NAddr, the traversal ID E, the address of the
traversal initiator SrcAddr, the ID of the local node MyID, and the
count of wrap-arounds thus far. Rule ri2 begins the traversal when

the orderingEvent appears at a node, by creating the ordering

token. How a particular traversal initiator is chosen is an orthogonal
concern. It could be decided using a leader election algorithm on
the ring, or the node responsible for a well-known ID could be the
one to start the traversals. Either way, the rule assigns a traversal
ID E to each traversal, so multiple traversals going on at the same
time are allowed.

Rules ri3 and ri4 update the token’s counter of wrap-arounds
by looking up the current node’s immediate successor (bestSucc)
and comparing the two nodes’ IDs. ri3 leaves the number of
wrap-arounds unchanged if the current node’s ID is lower than its
successor’s, while ri4 increments it otherwise. Both produce a
countWraps tuple with the outcome.

Rules ri5 and ri6 decide whether to continue the traversal,
based on the updated token countWraps. ri5 forwards the to-
ken to the successor, if the successor’s ID is different from that of
the traversal initiator. ri6 is triggered when the successor’s address
and that of the initiator are the same (i.e., the corresponding fields in
countWraps match), and when the number of wrap-arounds found
during the traversal is different from 1. Then an ordering problem is
reported to the initiator. No notice is sent if the traversal completes
finding exactly a single wrap-around.

3.1.3 State Oscillations
So far, we have addressed correctness invariants in topology,

from the point of view of the ring graph and from the point of view
of vertex identifiers. In the next set of examples, we shift focus to
detectors of potentially pathological execution patterns, namely the
proliferation of stale state.

In Chord, as in many stabilizing overlays that use gossip among
neighbors, nodes exchange bits of their routing state with their
neighbors. In the stabilization process, already mentioned above, a
node periodically tells its immediate ring neighbors about its other
immediate ring neighbors. Each node sorts through these periodic
neighborhood exchanges to obtain an up-to-date view of its vicin-
ity.

An incorrect implementation of the Chord protocol might fall
prey to the recycled dead neighbor problem. In this pattern, a node
finds a neighbor unresponsive and removes it from its routing state,
after having gossiped it to its other neighbors. In subsequent gos-
sip exchanges, the node receives the formerly removed neighbor
and places it back into its routing state, in the long run oscillat-
ing back and forth between removing and reinserting the offend-
ing neighbor. Typically, remembering recently “deceased” neigh-
bors for a while may solve this problem. In this section, we focus
on the manifestation of the problem and specify detectors for it at
three different granularities: local, single-oscillation detection; lo-
cal, repeated-oscillation detection; and collaborative detection.

Single oscillation: We give an example with Chord successors,
held in succ tuples, containing the local node address, the succes-
sor’s ID, and the successor’s address. In a simple Chord imple-
mentation in P2, if a node pings a successor without response, it
remembers that successor as a

faultyNode@NAddr(FaultyAddr, Time)

tuple and removes it from the succ table.
A node opportunistically inserts new successors into its state dur-

ing periodic stabilization: its immediate successor’s predecessor,
and its successors’ successors. Then it chooses the k closest and
discards the rest. For reference, we give below the two P2 Chord
rules [19] that perform successor insertions when the two messages
(sendPred and returnSucc) are received for the two cases, re-
spectively.
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sb4 succ@NAddr(SID, SAddr) :- sendPred@NAddr(SID,
SAddr).

sb7 succ@NAddr(SID, SAddr) :- returnSucc@NAddr(SID,
SAddr).

To build an oscillation detector for successors, we use the following
two rules, which capture the two insertion messages above and, if
they contain recently deceased nodes, found in faultyNode tuples,
signal an oscillation with a timestamp. The f now() built-in gets
the current time.

os1 oscill@NAddr(SAddr, T) :-
faultyNode@NAddr(SAddr, T1), sendPred@NAddr(SID,
SAddr), T := f_now().

os2 oscill@NAddr(SAddr, T) :-
faultyNode@NAddr(SAddr, T1),
returnSucc@NAddr(SID, SAddr), T := f_now().

Repeat oscillations: A single oscillation may occur naturally
once in a while due to transient connectivity disruptions. Here we
add two more rules and an extra table to the above example to catch
repeat oscillations.

materialize(oscill, 120, infinity, keys(2,3)).

os3 countOscill@NAddr(OscillAddr, count<*>) :-
periodic@NAddr(E, 60), oscill@NAddr(OscillAddr,
Time).

os4 repeatOscill@NAddr(OscillAddr) :-
countOscill@NAddr(OscillAddr, Count), Count >=
3.

The materialize statement creates a table to store oscill tuples,
for up to 120 seconds each, with a primary key made up of the
oscillating node address and time. This means that at any time, the
oscill table contains all oscillator proclamations from the prior
120 seconds, potentially multiple per node.

Rule os3 starts a check every 60 seconds and counts the num-
ber of oscillations per node in the oscill table. Rule os4 applies
a threshold of 3 oscillations within the history of the oscill table
(120 sec) before declaring a repeat oscillator. When repeatOscill
is issued, an alarm could be raised to look into this behavior.

Collaborative oscillation detection: We extend the example
further by allowing nodes to proclaim oscillations collaboratively
within the ring neighborhood. Now each node, after detecting a
repeat oscillator, notifies its successors and predecessor that it has
registered a repeat oscillator. Since we are currently treating suc-
cessor oscillations, this set of nodes is precisely the set that would
also be experiencing oscillations from the same offender. In the
OverLog extension below, a node marks an oscillator chaotic if
more than three of its neighbors believe it to be a repeat oscillator.
Finding a node chaotic means that, with high confidence, the sys-
tem is prone to state oscillations and corrective or palliative action
must be taken.

materialize(nbrOscill, 120, infinity, keys(2,3)).

os5 nbrOscill@NAddr(OscillAddr, NAddr) :-
repeatOscill@NAddr(OscillAddr).

os6 nbrOscill@SAddr(OscillAddr, NAddr) :-
repeatOscill@NAddr(OscillAddr), succ@NAddr(SID,
SAddr).

os7 nbrOscill@PAddr(OscillAddr, NAddr) :-
repeatOscill@NAddr(OscillAddr), pred@NAddr(PID,
PAddr).

os8 nbrOscillCount@NAddr(OscillAddr, count<*>) :-
nbrOscill@NAddr(OscillAddr, ReporterAddr).

os9 chaotic@NAddr(OscillAddr) :-
nbrOscillCount@NAddr(OscillAddr, Count), Count >
3.

The materialize statement creates another table nbrOscill that,
for 120 seconds, stores repeat oscillators in my neighborhood and
the addresses of the neighbors who told me about them. Rule os5

places a node’s detected oscillators into its own nbrOscill table.
Rules os6 and os7 propagate the same to the node’s successors’
and predecessor’s nbrOscill tables, respectively. Rule os8 counts
the number of nbrOscill tuples for each oscillator whenever the
table is updated. Rule os9 finally identifies chaotic nodes as those
with 3 or more reports of repeat oscillations in the neighborhood.

3.1.4 Proactive inconsistency detection
Thus far, we have described checks that can capture contributing

factors to routing inconsistency. Here we capture the first-order
symptom itself: obtaining differing responses to the same lookup
at the same time. We tackle this as an active test, in which we
generate a lookup workload and observe the results. Specifically, a
node initiates a periodic consistency probe, during which it asks its
neighbors to issue lookups for the same key. It checks the results it
receives, counting the size of the largest cluster of responses with
the same answer. The size of that cluster relative to the number of
probe lookups is a consistency metric. Ideally, this metric would
be 1.
materialize(conLookupTable, 100, 100, keys(1)).

materialize(conRespTable, 100, 100, keys(1)).

materialize(respCluster, 100, 100, keys(1)).

materialize(maxCluster, 100, 100, keys(1)).

materialize(lookupCluster, 100, 100, keys(1)).

cs1 conProbe@NAddr(ProbeID, K, T) :-
periodic@NAddr(ProbeID, 40), K := f_randID(), T
:= f_now().

cs2 conLookup@NAddr(ProbeID, K, FAddr, ReqID, T) :-
conProbe@NAddr(ProbeID, K, T),
uniqueFinger@NAddr(FAddr, FID), ReqID :=
f_rand().

cs3 conLookupTable@NAddr(ProbeID, ReqID, T) :-
conLookup@NAddr(ProbeID, K, SrcAddr, ReqID, T).

cs4 lookup@SrcAddr(K, NAddr, ReqID) :-
conLookup@NAddr(ProbeID, K, SrcAddr, ReqID, T).

cs5 conRespTable@NAddr(ProbeID, ReqID, SAddr) :-
lookupResults@NAddr(K, SID, SAddr, ReqID,
Responder), conLookupTable@NAddr(ProbeID, ReqID,
T).

cs6 respCluster@NAddr(ProbeID, SAddr, count<*>) :-
conRespTable@NAddr(ProbeID, ReqID, SAddr).

cs7 maxCluster@NAddr(ProbeID, max<Count>) :-
respCluster@NAddr(ProbeID, SAddr, Count).

cs8 lookupCluster@NAddr(ProbeID, T, count<*>) :-
conLookupTable@NAddr(ProbeID, ReqID, T).

cs9 consistency@NAddr(ProbeID, RespCount /
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LookupCount) :- periodic@NAddr(E, 20),
lookupCluster@NAddr(ProbeID, T, LookupCount), T
< f_now() - 20, maxCluster@NAddr(ProbeID,
RespCount).

cs10 delete lookupCluster@NAddr(ProbeID, T, Count)
:- consistency@NAddr(ProbeID, Consistency).

cs11 delete conLookupTable@NAddr(ProbeID, ReqID, T)
:- consistency@NAddr(ProbeID, Consistency),
conLookupTable@NAddr(ProbeID, ReqID, T).

This example maintains the following tables: conLookupTable

holds consistency lookups for the duration of a consistency probe;
conRespTable holds responses to consistency lookups, respCluster
clusters together responses that agree with eachother; maxCluster
keeps the size of the most popular response; and lookupCluster

counts the consistency lookups that have been sent for a single
probe. More details on each table follow.

Rule cs1 periodically begins a consistency probe of a random
key K in the Chord ID space, and picks the time of the probe T, and
a random probe request ID E (called ProbeID in the remainder).
A probe produces one consistency lookup for every faraway neigh-
bor of the node (such are called fingers in Chord terminology, and
are held in the uniqueFinger table here), giving each lookup its
own request ID, in rule cs2. Each consistency lookup is stored in
conLookupTable for later perusal (rule cs3), and a Chord lookup
is issued starting with the chosen finger node in rule cs4. A lookup
is placed in a lookup tuple, which contains the starting node’s ad-
dress, the key looked for, the address of the requester, and a lookup
request ID.

Responses are conveyed in a lookupResults tuple, containing
the requester’s address, the key, the outcome of the lookup (that
is, the successor ID and address for the sought key), as well as the
request ID and the address of the responder. When/if a response
arrives back that matches the request ID of a consistency lookup,
it is stored in the consistency responses table in rule cs5. Rule
cs6 keeps updated a table of response clusters, in which for every
successor to the looked-up key K returned, an entry is maintained
with the number of agreeing responses. Rule cs7 keeps track of
the response cluster with the maximum count, and cs8 counts the
number of consistency lookups sent for a given probe.

To tally the results, periodically a probe’s lookup count is found
for a probe initiated further than 20 sec in the past, in rule cs9. The
rule outputs the consistency metric for that probe (tuple consistency)
by dividing the size of the largest response cluster by the num-
ber of consistency lookups issued. After the consistency metric is
computed, all consistency lookup state is deleted in rules cs10 and
cs11; the delete keyword removes from tables any tuples in the
rulehead. Remaining state for responses and response clusters ex-
pires after a while.

As above, the consistency metric can be used to raise alarms,
e.g., with a trigger such as

cs12 consAlarm@NAddr(PrID) :-
consistency@NAddr(PrID, Cons), Cons < 0.5.

or in forensic queries, as described in the next section.

3.2 Execution Profiling
A common task of maintainers is to estimate where the system

spends its time performing its tasks. For example, an operator may
wish to know how P2 Chord spends its time between when a lookup
is issued and a response is returned. That would be particularly
appropriate for those lookups that turn up inconsistent in the rules
of Section 3.1.4.

Here we demonstrate the use of execution tracing to split lookup
latencies into time spent executing rules, time spent traversing the
network, and time spent in the dataflow between rules. A long
time spent between rules might indicate, for instance, unnecessary
queuing or execution blocking.

The following rules start from a selected lookup response (indi-
cated in the traceResp event) and walk backwards the execution
graph of that response, rule by rule, collecting timings in the ap-
propriate bin. When the originating lookup has been reached in the
traversal, the results are stored for later perusal.

ep1 trav@NAddr(TupleID, TupleID, TupleTime, 0, 0,
0) :- traceResp@NAddr(TupleID, TupleTime).

ep2 ruleBack@SrcAddr(ID, Curr, LastT, RuleT, NetT,
LocalT, Local) :- trav@NAddr(ID, Curr, LastT,
RuleT, NetT, LocalT), tupleTable@NAddr(Curr,
SrcAddr, SrcTID, LocSpec), Local := (LocSpec ==
SrcAddr).

ep3 forward@NAddr(ID, In, InT, RuleT + OutT - InT,
NetT, LocalT + LastT - OutT, Rule) :-
ruleBack@NAddr(ID, Curr, LastT, RuleT, NetT,
LocalT, true), ruleExec@NAddr(Rule, In, Curr,
InT, OutT, true).

ep4 forward@NAddr(ID, In, InT, RuleT + OutT - InT,
LocalT + LastT - OutT, LocalT, Rule) :-
ruleBack@NAddr(ID, Curr, LastT, RuleT, NetT,
LocalT, false), ruleExec@NAddr(Rule, In, Curr,
InT, OutT, true).

ep5 trav@NAddr(ID, Curr, LastT, RuleT, NetT,
LocalT) :- forward@NAddr(ID, Curr, LastT, RuleT,
NetT, LocalT, Rule), Rule != "cs2".

ep6 report@NAddr(ID, RuleT, NetT, LocalT) :-
forward@NAddr(ID, Curr, LastT, RuleT, NetT,
LocalT, "cs2").

Rule ep1 is triggered when a traceResp event carrying the tuple
ID TupleID to trace backward. It starts a traversal token trav,
which contains the local node address, the tuple ID being investi-
gated and the current tuple ID, the latest timestamp observed, and
then the three cumulative times: time within rule strands (denoted
RuleT below), in between rule strands within the same dataflow
graph (denoted LocalT below), and in between rule strands travers-
ing the network (denoted NetT below). The rule starts the traversal
with the offending tuple, zeroing out all cumulative times.

Rule ep2 receives a trav token and checks the current tuple
ID against the tupleTable, figuring out whether the current tuple
crossed the network or not, and encapsulating this information into
a ruleBack tuple.

Rules ep3 and ep4 traverse a ruleExec tuple and update cumu-
lative times according to whether the currently traversed tuple was
found local or remote by ep2. Rule ep3 is triggered if the tuple was
local. It finds all ruleExec tuples that produced the current tuple as
output, and out of those selects only the single ruleExec that car-
ries the input event of its rule, ignoring preconditions, since their
backtracing is not on the main path of the lookup latency. Then
ep3 subtracts the time when the ruleExec execution completed
(OutT) from the time LastT when the current tuple was received
by its destination rule. It adds this interval to LocalT, since the
current tuple was local. Furthermore, the rule adds the time it took
for the ruleExec rule to complete (OutT - InT) to RuleT. Fi-
nally, ep3 switches to regarding as current tuple the input tuple In
of the ruleExec entry and sends the state of the computation (in
a forward tuple) for termination checking below. Rule ep4 cor-
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responds to ep3 for the case where the current tuple did traverse
the network, and functions the same way, except it updates NetT

instead of LocalT.
Rule ep5 decides whether to stop the traversal or not, based

on the outcome of rules ep3 or ep4. It compares the rule ID of
the ruleExec tuple just traversed to rule ID cs2. Recall from
Section 3.1.4 that cs2 was the rule initiating consistency lookups,
therefore that is where this particular execution traversal should
conclude accumulating latency components. If in fact the execution
traversal has not reached rule cs2 yet, the process continues recur-
sively by issuing a fresh trav tuple. Otherwise, rule ep6 reports
(locally) the three cumulative numbers collected from the execution
trace.

3.3 Consistent Distributed Snapshots
Distributed system state is hard to capture since, typically, at all

times all components of the system are moving forward with their
execution tasks. Capturing a “snapshot” of all components’ states
at the same time may be tricky if for instance some components are
lagging behind in their event processing.

A consistent snapshot of a distributed computation seeks to cap-
ture a state of all components and the communication “channels”
among them that is equivalent to an actual global state: from any
component’s point of view, it is indistinguishable from a global
state. Consistent snapshots can be invaluable in checkpointing the
computation for later restart, or for detecting stable properties of
the system such as deadlocks, termination of computations, etc.
Here we describe an implementation within P2 of the classic Chandy-
Lamport algorithm for distributed consistent snapshots [5] for Chord.

Briefly, the algorithm starts with an initiator node, which takes a
snapshot of its relevant state (in our context, copies aside the con-
tents of some state tables), and then sends a marker message to all
of its neighbors. Every node receiving such a marker for the first
time (for a given snapshot) similarly records its state and forwards
the marker to all of its own neighbors. A node records all messages
it receives from a neighbor between the time when it first snapped
its state and until it receives a (subsequent) marker from that neigh-
bor. When a node has snapped its own state and has received mark-
ers from all of its neighbors, it terminates the algorithm. The output
is the node’s snapped state and all recorded messages from each
neighbor.

The original algorithm is meant to operate on a FIFO network
and when each node knows all its incoming and outgoing links. In
contrast, although a Chord node knows its outgoing links, it does
not know its incoming links and, in some cases, it might exchange
messages with nodes that are not its neighbors in the topology (for
instance, when receiving a lookup response). To alleviate the lack
of incoming link information, the implementation below creates a
view of the topology for incoming links in the backPointer table.
bp1 backPointer@NAddr(RemoteAddr) :-

pingReq@NAddr(RemoteAddr).

bp2 numBackPointers@NAddr(count<*>) :-
backPointer@NAddr(RemoteAddr).

P2 Chord nodes ping all their neighbors periodically to check their
liveness. Rule bp1 above stores the addresses of those who ping a
node (using the pingReq message) to maintain a table of incoming
links. bp2 counts the current back pointers.

To handle messages traveling between non-neighboring nodes,
we modify the algorithm as follows. If a node taking a snapshot
receives such a message from a node that has already snapped its
state, it does not record the message in the snapshot, since that
message belongs to the future of both nodes’ snapshots. If the mes-

sage arrives from a node that has not taken the snapshot yet, it is
recorded as per the algorithm, and the sender is added to the local
node’s incoming links. Finally, if the message arrives at a node that
has not started the next snapshot from a node that has, it is regarded
as a new marker (which starts the snapshot process) and the sender
is added to the incoming links.

An OverLog implementation of this algorithm on top of P2 Chord
follows. This implementation assumes that the network guarantees
FIFO message delivery. We omit an extension that would use an
in-order transport such as TCP underneath to remove this assump-
tion.

materialize(snapState, 100, 100, keys(1)).

materialize(snapBestSucc, 100, 50, keys(1, 2)).

materialize(snapFingers, 100, 1600, keys(1, 2)).

materialize(snapPred, 100, 10, keys(1, 2)).

materialize(channelState, 100, 1600, keys(1, 2)).

materialize(channelSendSuccDump, 100, 100,
keys(1, 4)).

materialize(channelLookupResDump, 100, 100,
keys(1, 3)).

sr1 snap@NAddr(I + 1) :- periodic@NAddr(E, tSnapFreq),
snapState@NAddr(I, State).

sr2 snapState@NAddr(I, "Snapping") :-
snap@NAddr(I).

sr3 currentSnap@NAddr(I) :- snap@NAddr(I).

sr4 snapBestSucc@NAddr(I, SAddr, SID) :-
snap@NAddr(I), bestSucc@NAddr(SID, SAddr).

sr5 snapFingers@NAddr(I, FPos, FAddr,
FID) :- snap@NAddr(I), finger@NAddr(FPos, FID,
FAddr).

sr6 snapPred@NAddr(I, PAddr, PID) :-
snap@NAddr(I), pred@NAddr(PID, PAddr).

sr7 marker@RemoteAddr(NAddr, I) :- snap@NAddr(I),
pingNode@NAddr(RemoteAddr).

sr8 haveSnap@NAddr(SrcAddr, I, count<*>) :-
snapState@NAddr(I, State), marker@NAddr(SrcAddr,
I).

sr9 snap@NAddr(I) :- haveSnap@NAddr(Src, I, 0).

sr10 channelState@NAddr(Remote + E, Remote, E,
"Start") :- haveSnap@NAddr(Src, E, 0),
backPointer@NAddr(Remote), Remote != Src.

sr11 channelState@NAddr(Src, E, "Done") :-
haveSnap@NAddr(Src, E, C),
backPointer@NAddr(Remote), (C > 0) || (Src ==
Remote).

sr12 doneChannels@NAddr(E, count<*>) :-
channelState@NAddr(E1, Src, E, "Done").

sr13 snapState@NAddr(E, "Done") :-
snapState@NAddr(E, "Snapping"),
doneChannels@NAddr(E, C),
numBackPointers@NAddr(C).
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sr14 snap@NAddr(SrcSnapID) :-
lookupResults@NAddr(K, SID, SAddr, LookupID,
Src, SrcSnapID), currentSnap@NAddr(MySnapID),
SrcSnapID > MySnapID.

sr15 channelSendSuccDump@NAddr(E, LI,
SID, SAddr, Time) :- returnSuccessor@NAddr(SID,
SAddr, Src), channelState@NAddr(E2, Src, E,
"Start"), Time := f_now().

sr16 channelLookupResDump@NAddr(SrcSnapID, E,
LI, S, SI, C) :- lookupResults@NAddr(K, S, SI,
E2, LI, SrcSnapID), currentSnap@NAddr(SnapID),
SrcSnapID < SnapID.

Every node maintains its current snapshot state in snapState

table, each tuple of which contains a snapshot ID (an increasing
counter), and the current phase of the snapshot (“Snapping” while
it is on-going, “Done” when it is completed). Rule sr1 periodically
advances the snapshot ID by one and begins a new snapshot, storing
the new snapshot state in rule sr2. Note that sr1 only executes on
the snapshot initiator, while the remainder of the rules execute at
all nodes. Rule sr3 records the current snapshot.

Rules sr4, sr5, and sr6 record the relevant state for this snap-
shot, by copying information from the bestSucc, finger, and
pred tables, respectively. The recorded state is stored in separate
tables (snapBestSucc, snapFingers, and snapPred) indexed by
snapshot ID and input table primary key. Rule sr7 sends out mark-
ers to all outgoing links of the current node. In P2 Chord, the
pingNode table contains all neighbors that a node pings period-
ically for liveness, and therefore represents the node’s outgoing
links.

Rule sr8 checks the state, if any, of an incoming marker’s snap-
shot ID. The result, haveSnap, has a count of snapshot state entries
for that ID: 0 if this is a new snapshot, 1 if this is an already seen
snapshot. If this is a new snapshot, rule sr9 begins the snapshot as
above. Rule sr10 begins the recording of messages on all incoming
links – other than the one on which the marker arrived. The incom-
ing links are found from the backPointer table described above.
sr11 marks instead the recording of the channel as Done for the
marker’s sender or for every incoming link if this is a seen-before
snapshot.

Rules sr12 and sr13 deal with termination. The former counts
the incoming links marked as Done – that is, no longer recording
incoming messages. The latter compares this count to the num-
ber of incoming links and, if the two match, sets the phase of the
snapshot to Done.

Rule sr14 deals with the one Chord message that does not nec-
essarily flow over declared topology links, lookupResults. As
described above, when such a message arrives, it is regarded as a
snapshot marker when the sender is already in a snapshot beyond
the most recent snapshot on the recipient.

Finally, rule sr15 is an example of message recording for the
returnSuccessor message type. Recorded messages for a snap-
shot are timestamped and stored in a separate table per message
type. Similar rules, not shown here, would treat the remaining rel-
evant message types.

A point to note is that our rules will correctly take the consis-
tent snaphsot of the overlay routing structure under two assump-
tions: (a) snapshots finish within tSnapFreq seconds and (b) over-
lay structure does not change during the snapshot, i.e., no links are
added or removed.

Routing Consistency Revisited: The consistency probes of Sec-
tion 3.1.4 leave room for false positives and negatives. If two of the
supposedly concurrent probe lookups are held up differently along
the way, due to transient control or network stalls, they may experi-

ence a different global overlay state from each other. At best, those
probes provide hints of problems.

However, with consistent snapshots, this is not the case. One
could perform Chord lookups on the snapped overlay state, ex-
porting the functionality to the consistency probes, ensuring that
all concurrent probe lookups experience the same global state. We
review below the three original P2 Chord lookup rules [19] for ref-
erence.
l1 lookupResults@ReqAddr(K, SID, SAddr, E,

RespAddr) :- node@NAddr(NID), lookup@NAddr(K,
ReqAddr, E), bestSucc@NAddr(SAddr, SID), K in
(NID, SID].

l2 bestLookupDist@NAddr(K, ReqAddr, E, min<D>) :-
node@NAddr(NID), lookup@NAddr(K, ReqAddr, E),
finger@NAddr(FPos, FID, FAddr), D := K-FID-1,
FID in (NID, K).

l3 lookup@FAddr(K, ReqAddr, E) :- node@NAddr(NID),
bestLookupDist@NAddr(K, ReqAddr, E, D),
finger@NAddr(FPos, FID, FAddr), D == K-FID-1,
FID in (NID, K).

To run over a consistent snapshot, we can add another set of these
three rules, modified to refer to the consistent snapshot instead of
the current system state.
l1s sLookupResults@ReqAddr(SnapID, K, SID, SAddr,

E, RespAddr, SnapID) :- node@NAddr(NID),
sLookup@NAddr(SnapID, K, ReqAddr, E),
snapBestSucc@NAddr(RecID, SnapID, SAddr, SID), K
in (NID, SID].

l2s sBestLookupDist@NAddr(SnapID, K, ReqAddr, E,
min<D>) :- node@NAddr(NID),
sLookup@NAddr(SnapID, K, ReqAddr, E),
snapFingers@NAddr(RecID, SnapID, FPos, FID,
FAddr), D := K-FID-1, FID in (NID, K).

l3s sLookup@FAddr(SnapID, K, ReqAddr, E) :-
node@NAddr(NID), sBestLookupDist@NAddr(SnapID,
K,ReqAddr, E, D), snapFingers@NAddr(RecID,
SnapID, FPos, FID, FAddr), D == K-FID-1, FID in
(NID, K).

Now, the consistency probe rules cs4 and cs5 in Section 3.1.4 can
be rewritten to use the modified lookup and response rules above
for a particular snapshot ID mysnap.
cs4s sLookup@SrcAddr(mysnap, K, NAddr, E) :-

conLookup@NAddr(ProbeID, K, SrcAddr, E, T).

cs5s conRespTable@NAddr(LookID, ProbeID, SAddr) :-
sLookupResults@NAddr(mysnap, K, SID, SAddr, E,
Responder), conLookupTable@NAddr(LookID, E,
ProbeID, T).

Note that regular lookups – that is, not issued by the consistency
probe – proceed using the original rules as normal, while the con-
sistency probe uses the snapshot-specific rules at the same time.
The system has had no need to stop and restart for this to happen.

Many properties beyond consistency can be performed on thus
obtained consistent snapshots to compute statistics, detect graph
properties, identify vulnerabilities, etc.

3.4 Discussion
We have presented examples from a broad design space of “add-

ons” that a programmer can apply to a running distributed system
implemented in P2: correctness assertions, fault detectors, high-
level state inspection, and reactive examination of system execu-
tion for forensic analysis. Note that while for convenience we have
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presented these examples in the context of a Chord implementa-
tion, the general techniques are applicable to the implementations
of a wide variety of distributed algorithms, in many cases without
significantly changing the OverLog rules. This ability to repurpose
rules and mix-and-match techniques on-line is a useful feature of
the P2 approach.

For example, the consistency checks of Section 3.1.1 deal with
topological soundness, while those in Section 3.1.2 deal with se-
mantic soundness on top of the topology. Neither of these are lim-
ited to a simple Chord ring, but instead can be applied to a variety of
structured ring-like routing graphs (for example, ones using greedy
finger-based routing).

More generally, the traversal algorithms embodied in our exam-
ples have wide utility: we have shown ring traversals and chain
traversals, for instance. Such traversal algorithms, combined with a
per-hop soundness evaluation check, can be applied to other over-
lay topologies and also to execution graphs (Section 3.2), snap-
shot graphs (Section 3.3), or even application-defined graphs (for
instance, dependencies among stored content within a distributed
repository).

Furthermore combining such detectors with execution tracing
can help quantify system performance in terms of reliability, like-
lihood of corruption, etc. For example, a traversal of the execution
state of a lookup result (as in Section 3.2) can at each step trace
back individual preconditions of the execution trace (e.g., specific
successor tuples), evaluating whether they may have been depen-
dent on routing oscillators.

An issue which is left unanswered in this paper is the user in-
terface. We simply illustrate with examples our vision of what
features might be interesting and leave the interaction details for
future work. A visual user interface to represent the results of such
monitoring queries (potentially with appropriate aggregation to re-
duce the data provided to the user) that also supports zooming into
specific parts of system would be an invaluable addition to our fea-
tures.

Logging, execution tracing and monitoring tasks invariably per-
turb the base system (they consume CPU cycles and memory), so
the state accessed by these tasks may not accurately reflect the sys-
tem state during normal functioning (i.e., without debugging tasks).
This is a well known tradeoff between accuracy and perturbation
associated with any debugging system. For our system, we cur-
rently implement certain optimizations (fixed number of execution
records, only store executions that produce a valid output) to reduce
the resource consumption of the logging framework. However, op-
timizing the resource usage of monitoring tasks and execution trac-
ing (e.g., by executing these queries at a lower priority than system
queries) to reduce the impact on the base system is left for future
work.

We now attempt to quantify the performance cost of the tech-
niques we have described.

4. PERFORMANCE COSTS
This section evaluates the cost of our approach. We quantify the

performance impact of 1) making system execution traceable, 2)
individual diagnostic rules, and 3) complete diagnostic programs.
We use typical space, computation, and communication metrics
to measure this cost. Specifically, we track the number of tuples
stored in main memory (as well as the process size in bytes) for
space measurements, the CPU utilization for computation measure-
ments, and the number of messages sent for communication mea-
surements. In this prototype, we do not export internal P2 state to
debugging queries; only application state is exported.

The baseline execution of the system consists of the P2 Chord
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Figure 4: CPU and memory utilization (average, standard de-
viation) for an increasing number of periodic rules with period
1 sec.

implementation [19], running on a population of 21 virtual nodes
executing as individual processes. Nodes fix fingers every 10 sec,
stabilize every 5 sec, and ping neighbors for liveness every 5 sec.
20 virtual nodes start and stabilize for 5 min on a lightly loaded
quadruple Intel Xeon 2 GHz compute server with 8 GB of main
memory. Then the 21st virtual node starts and stabilizes on an oth-
erwise unloaded dual Intel Xeon 3.2 GHz workstation with 4 GB
of main memory. Then we measure this separate 21st node to pro-
duce the results below. Unless otherwise noted, each datapoint was
produced by three separate runs, and we show average and stan-
dard deviation. We do not shape the network topology for these
experiments, since none of the measurements involve latencies.

First, we measure the cost of execution logging in the system,
while running P2 Chord. We find that execution logging increases
CPU utilization on a node running Chord by 40% on average, going
from utilization of 0.98 to 1.38. Memory consumption grows by
66% on average, from 8 MB (standard deviation of 1 MB) to 13
MB (standard deviation of 1 MB). Note that the absolute increase
in cost is minute.

We turn next to the evaluation of monitoring-rule overheads on
top of the running P2 Chord system. We evaluate synthetic rules
that exercise two aspects of such rules: the number of concurrently
running periodic rules (which install their own timers) and the num-
ber of piggy-backed rules reading system state.

The first synthetic rule adds to Chord an increasing number of
periodic rules (of the form

result@NAddr() :- periodic@NAddr(E, 1).

all of which trigger with period 1 sec. Figure 4 shows that CPU uti-
lization grows roughly proportionally to the number of rule copies
running, going up to 4.5% utilization with 250 copies from the
baseline of 1% without extra rules. Memory consumption, mainly
due to the increased rates of intermediate tuples generated, stabi-
lizes around 70% over that of Chord itself, which operates at much
slower rates than the benchmark. We show no message counts since
this was a local benchmark rule producing no messages beyond
those generated by Chord.

The second synthetic rule adds to Chord an increasing number of
non-periodic, “piggy-back” rules that do not install their own timer.
All copies are triggered by a common timer with period 1 sec. The
synthetic rule for this benchmark has the form

result@NAddr() :- event@NAddr(),
bestSucc@NAddr(SID, SAddr).

and contains a single state lookup (bestSucc table) in each rule
copy. Figure 5 shows that CPU utilization grows roughly linearly
with the number of rule copies, up to about 6% with 250 copies.
State lookups are therefore costlier than private timers, as com-
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Figure 5: CPU and memory utilization (average, standard de-
viation) for an increasing number of piggybacked rules on a
preexisting periodic event with period 1 sec.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

CP
U 

Ut
iliz

at
io

n 
%

 0
 1
 2
 3
 4
 5
 6

1
3/

4
1/

2
1/

4
1/

32
No

ne

Tx
 M

es
sa

ge
s

(x
10

00
)

Rate (1/sec)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Pr
oc

es
s 

M
em

or
y

(M
B)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1
3/

4
1/

2
1/

4
1/

32
No

ne

Li
ve

 T
up

le
s

(1
00

0x
)

Rate (1/sec)

Figure 6: CPU and memory utilization for the proactive incon-
sistency detector, with a rate (i.e., frequency of initiation) of
1/32 to 1 sec, alongside Chord without the detector (far left).

paring to Figure 4 shows. Memory consumption is similar to the
periodic-rule benchmark.

Next we evaluate the performance overhead of two usage exam-
ples from Section 3: proactive consistency probes and consistent
snapshots. Figure 6 plots overhead measurements for the proactive
consistency probes, running at increasing rates ranging from once
every 32 sec to once every sec. The “None” point on the x axis
denotes running Chord without the consistency probes. The figure
indicates that memory consumption and messages transmitted grow
linearly with the rate of the probe. CPU utilization, however, grows
superlinearly with the rate, as frequent probes (and their multiple
lookups) contend for cycles on the initiator and all nodes in the
testbed.

Figure 7 similarly plots the overheads caused by consistent snap-
shots taken at rates from 1/32 to 1 snapshot per sec. Linear growth
of memory consumption is much lower than with consistency probes,
and so is the superlinear rate at which CPU utilization grows. Note,
however, that consistent snapshots are much less taxing on the sys-
tem than the many parallel lookups initiated by consistency probes
for the same rates. Note also that the high rates that we measure
here for consistency probes and consistent snapshots are for evalu-
ation purposes; usually an operator would take snapshots at much
lower rates than these.

5. RELATED WORK
Finding faults (bugs, anomalies, etc.) in networked systems is a

large and burgeoning field. We limit ourselves here to representa-
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Figure 7: Consistent snapshots

tive examples of specific related areas to provide a context for our
work.

Monitoring and debugging with databases. Management in-
terfaces to networked systems often have a more-or-less relational
flavor, and database techniques have been used to externally moni-
tor, debug, and manage distributed systems [7, 8, 22, 26]. Logs are
typically stored in centralized or clustered databases, and subse-
quently queried. P2 takes a different approach: the query processor
is deeply embedded in the system, and has access to much more
detailed data on execution in realtime.

Performance debugging. Recent work [1, 2, 4, 6] provides
mechanisms to profile existing networked systems on-line. These
approaches track the life cycle of events as they pass through dif-
ferent system components (e.g., an HTTP request causing a disk
access, a page fault, etc.); the information gathered is then mined
to find performance anomalies or bottlenecks in the system. Much
of the achievement of these systems is reconstructing meaningful
data- and control-flow from low level monitoring information. P2
avoids this challenge by constructing the system in the first place
such that high-level structural information is retained and can be
related to low-level tracing in a natural way on-line by the query
processor.

Debugging configurations or intrusions. Several systems trace
implications of configuration errors by inferring causality relation-
ships [16, 20, 24] or mining for events correlated with changes in
system behavior [25]. Kiciman and Subramanian [15] provide a
model that constitutes a diagnosable system in the same context.
P2 is narrower in scope in this respect: our examples are at present
rule-based tests and metrics using detailed execution information
and system reflection, rather than large-scale statistical measures
and machine-learning techniques.

Distributed debuggers. Early work by Bates et al. [3] proposed
a high-level debugger that compares the expected behavior of a net-
work to the observed behavior of the implementation. The chal-
lenge lies in inferring system behavior from observable informa-
tion. In P2, the high-level specification of the system facilitates
this by making explicit the preconditions and expected output of
each algorithmic step.

Harris [11] proposed sandboxing distributed components in a
virtual machine monitor (VMM) to capture and replay external fac-
tors affecting system execution (e.g., processor status, scheduling,
etc.). We achieve something close to this on-line by logging and
analyzing the system’s execution, since we can observe the system
at a level of abstraction higher than processor flags and interrupts.
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Closest to our vision is work by Lin et al. [18] on an integrated
toolkit for optimizing the implementation and testing of distributed
systems. The authors plan to generate code from a high level spec-
ification that can run in both simulation and real networks. It is
not yet clear what high-level abstraction they will use. In P2, we
compile a logic language to a dataflow graph, providing for on-line
debugging of the system at multiple abstraction levels.

Recently, Geels et al. [10] proposed a technique for debugging
distributed systems by logging the execution of deployed systems
and replaying them deterministically for offline analysis. It also in-
tegrates gdb to allow source level debugging. However, due to its
inherent requirement of replay at one site, it needs to ship logs to
one place which is costly. Secondly, this technique is designed to
find non-deterministic bugs or race conditions, rather than viola-
tions of high-level correctness conditions.

Pip [21] is a new methodology for debugging distributed sys-
tems. It works by comparing actual behavior and expected be-
havior to expose bugs. Programmers express expectations about
a system’s structure, timing and other properties. Pip logs actual
behavior and provides query and visual interface for exploring the
expected and unexpected behavior. It has been shown to be useful
in finding bugs in existing systems. However, Pip debugging hap-
pens at a central place where all the system logs are collected and
it is offline.

Debugging Languages. Crawford et al. [9] present a framework
for the design of imperative debugging languages. They construct
a generic debugging language, GDL, to capture the main required
features for any such language. Many of the inspectional language
constructs of GDL are present in OverLog, although we do not yet
provide support for program control such as stepping or breakpoint-
ing. It is unclear what the implications of this might be in an on-line
networked environment.

Deep embedded monitoring. IBM Websphere XD provides a
health monitoring subsystem for the IBM Websphere [14]. A set
of rules or conditions are provided which define the good health
of the system. These conditions are monitored and certain actions
are taken when these conditions are violated. For example, if mem-
ory usage of an application hovers above the specified threshold for
some specified period, an event may trigger the restart the applica-
tion. Similarly, if a server is overloaded for a specified period of
time, some of its work is offloaded to an underloaded server. Typ-
ically, the conditions are performance oriented and lack the func-
tional aspect of debugging (e.g., backtracking the causality chain
to find the cause) as supported by our system.

Hollingsworth et al. [12] provides a mechanism for performance
monitoring of parallel programs by guiding the search of bottle-
necks in the program execution. It tries to answer three questions:
why, where and when does the bottleneck appear. The system starts
with a given set of hypotheses (e.g., synchronization is the bot-
tleneck) provided by the user and depending on the execution, a
hypothesis is tested and automatically refined. This helps in re-
ducing the trace data to be collected and at the same time zoom
to the specific area plagued by bottlenecks. The application needs
to be recompiled to enable instrumentation at appropriate places.
The focus of this work is to find only the performance bottlenecks,
however we focus on finding arbitrary bugs and their root causes
without need for recompilation.

Huang et al. [13] propose an architecture for adapting appli-
cations to changing runtime environments using the event-action
based rules provided by the application designers. These event-
action rules explain what event to monitor and what action to take
when that particular event happens. This paper explains the diffi-
culty in building an architecture which can support this feature, as

there might be different adaptations which might conflict with each
other, both in terms of action as well as intent and how to iden-
tify these conflicts and resolve them. Our work does not focus on
adaptations but on finding problems and their causes.

6. CONCLUSIONS
The objective of this paper has been to argue that combining fea-

tures of “diagnosable” systems, such as exposed state and execu-
tion transparency, with features of “diagnostic” systems, such as
the ability to process distributed queries, it is possible to build dis-
tributed systems that evolve along with their fault-finding tasks in
an organic and natural way. We have proposed a candidate sys-
tem based on P2 that combines declarative query processing, ex-
ecution logging, and on-line execution tracing. Finally, we have
demonstrated and measured the performance of a broad range of
fault-finding tasks, both local and distributed in scope, some sim-
ple and others as sophisticated as complex distributed algorithms,
to explore the power and flexibility of our approach.

Many challenges remain ahead for our work. We have extended
our execution logging facilities to the high-level declarative rule-
based execution abstraction of OverLog, the logic language in which
P2 applications are specified. However, faults can frequently be
found at lower-level abstractions, such as the dataflow graph ab-
straction on which P2 applications are executed in practice. Ex-
tending the language to enable diagnostic specifications at lower-
level abstractions is work in progress and may inch away from
the current logic language. Furthermore, unlike rule-level diag-
nostics, dataflow-level diagnostics must be specified with regards
to a “moving target” lower representation, which may be subject
to transparent optimizations. Exposing useful state for diagnosis
while still allowing optimization clearly requires careful engineer-
ing.

Perhaps more importantly, this work will have to face a grander
challenge of scope. Beyond the mechanistic applications we have
described here, fault finding typically extends to the very large
(anomaly detection in large distributed populations), the very small
(scheduling decisions or timing issues), and the very complex (in-
trusion detection and misbehavior). P2’s query-processing pedi-
gree suggests that large-scale statistical processing may be possi-
ble. Prioritized execution of debugging rules may allow the un-
perturbed observation of sensitive, low-level scheduling artifacts.
And the fine-grained dataflow element building blocks of P2 may
lend themselves well to verifiable audit trails that can be inspected
for undeniable inconsistencies leading to detection of misbehavior.
Pursuing all of these exciting possibilities is the subject of our on-
going work.
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