
Evita Raced: Metacompilation for Declarative Networks

*Tyson Condie, *David Chu, Joseph M. Hellerstein, and Petros Maniatis
UC Berkeley and Intel Research Berkeley

ABSTRACT
Declarative languages have recently been proposed for many new
applications outside of traditional data management. Since these
are relatively early research efforts, it is important that the architec-
tures of these declarative systems be extensible, in order to accom-
modate unforeseen needs in these new domains. In this paper, we
apply the lessons of declarative systems to theinternalsof a declar-
ative engine. Specifically, we describe our design and implemen-
tation ofEvita Raced, an extensible compiler for the OverLog lan-
guage used in our declarative networking system,P2. Evita Raced
is ametacompiler: an OverLog compiler written in OverLog. We
describe the minimalist architecture of Evita Raced, including its
extensibility interfaces and its reuse of P2’s data model and runtime
engine. We demonstrate that a declarative language like OverLog is
well-suited to expressing traditional and novel query optimizations
as well as other query manipulations, in a compact and natural fash-
ion. Finally, we present initial results of Evita Raced extended with
various optimization programs, running on both Internet overlay
networks and wireless sensor networks.

1. INTRODUCTION
There has been renewed interest in recent years in applying declar-

ative programming to a variety of applications outside the tradi-
tional boundaries of data management. Examples include work on
compilers [20], computer games [35], natural language process-
ing [9], security protocols [21], information extraction [31] and
modular robotics [3]. Our own work in this area has focused on
Declarative Networking, as instantiated in theP2 system for In-
ternet overlays [24, 25], and theDSN system for wireless sensor
networks [6]; this work has been extended by various colleagues as
well [1,5,32,33].

There is a strong analogy between the Internet today, and database
systems in the 1960’s. Network protocol implementations involve
complex procedural code, and there is increasing need to separate
their specification from physical and logical changes to compo-

∗Tyson Condie and David Chu are supported in part by the National
Science Foundation under Grants IIS-0713661 and CNS-0722077,
and by a gift from Microsoft Corporation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

nents underneath them: network fabrics and architectures are in
a period of swift evolution [2]. Hence the lessons of Data Inde-
pendence and declarative approaches are very timely in this do-
main [15], and are reflected by recent interest in automatic network
optimization and adaptation [11]. Moreover, we have observed that
many networking tasks are naturally described in recursive query
languages like Datalog, because (a) they typically involve recur-
sive graph traversals (e.g., shortest-path computations) [26], and
(b) the asynchronous messaging inherent in networks is neatly ex-
pressed as joins of message streams with “rendezvous” or “session”
tables [24,25].

Given these intuitions, we implemented the P2 and DSN sys-
tems, and demonstrated the utility of the declarative approach with
Datalog-based implementations of a host of network functionalities
at various levels of the protocol stack. Both of these systems allow
protocols to be expressed as programs in a Datalog-like language,
which are compiled to dataflow runtime implementations reminis-
cent of traditional database query plans. We have found that using
a declarative language often results in drastic reductions in code
size (100× and more) relative to procedural languages like C++.
Perhaps more surprising, our declarative protocols are often quite
intuitive: in many cases they are almost line-for-line translations
of published pseudocode, suggesting that Datalog is indeed a good
match for the application domain [6,25].

1.1 A Reflection on Declarative Languages
Declarative Networking and related topics have the potential to

expand the impact of database research into new domains, while
reviving interest in classical database topics like recursive query
processing that had received minimal attention in recent years. Yet
our own systems are implemented in imperative programming lan-
guages: the P2 declarative overlay system is implemented in C++,
and the DSN declarative sensor network system is implemented
in an embedded dialect of C. We recently began asking ourselves
whether Codd’s vision applies to our own efforts: can declarative
programming improve the implementation of declarative systems?

In this paper, we put declarative systems “in the mirror,” inves-
tigating a declarative implementation of a key aspect of a declara-
tive system. Specifically, we have reimplemented the query plan-
ning component of P2 as ametacompiler: a compiler for the P2
language, OverLog, that is itself written in OverLog. We call the
resulting implementation “Evita Raced”1. We use Evita Raced pri-
marily for query optimization, extending P2 with a number of im-
portant query optimization techniques it formerly lacked. Our ex-
perience has been quite positive: we were able to relatively easily
take P2 from having almost no optimizations at all, to having a

1“Evita Raced” is almost “Declarative” in the mirror, but as with the Over-
Log language itself, it makes some compromises on complete declarativity.

1



fairly sophisticated (and growing) set of optimizations. For exam-
ple, we implemented the traditional System R dynamic program-
ming optimizer (including choice of access and join methods, “in-
teresting orders,” and histograms) in only 51 OverLog rules (292
lines of code); our implementation of the Supplementary Magic
Sets rewriting optimization for recursive queries [34] is not only
compact (68 rules, 264 lines), but also a close translation of the
description from Ullman’s textbook on the subject [34].

The elegance of our approach comes in part from the fact that
query optimization techniques—like many search algorithms—are
at heart recursive algorithms, and benefit from a declarative recur-
sive language in much the same way as routing protocols. Even
non-recursive optimization logic—such as parts of Ullman’s magic-
sets pseudocode—is simple enough to express in a declarative fash-
ion that abstracts away mechanistic details such as the scheduling
of data-parallel steps (e.g., scanning all rules in a program in paral-
lel versus sequentially).

Our contributions here are three-fold. First, we present a declar-
ative architecture for query optimization that is based on metacom-
pilation, reusing the query executor in a stylized fashion to serve
as the engine beneath the optimization process. This results in an
economy of mechanism[28] not afforded by earlier extensible opti-
mizers. Second, we show that a variety of traditional and novel
query optimizations are easy to express in a recursive, declara-
tive language. Finally, we validate the simplicity and applicability
of our design via an implementation of an OverLog query opti-
mizer for the P2 Declarative Networking engine, which also cross-
compiles to DSN programs that run on wireless sensor networks.
Based on our experience to date, we believe that declarative meta-
compilation is a clean, architecturally parsimonious way to build
the next generation of extensible query optimizers for a wide vari-
ety of emerging application domains, where the relevant optimiza-
tions remain unclear.

2. P2: LANGUAGE AND ARCHITECTURE
We begin our discussion with an overview of key aspects of the

P2 declarative network system. While ostensibly a network proto-
col engine, architecturally P2 resembles a fairly traditional shared-
nothing parallel query processor, targeted at both stored state and
data streams. P2 supports a recursive query language called Over-
Log that resembles traditional Datalog with some extensions we
discuss below. Each P2 node runs the same runtime engine, and, by
default, participates equally in every declarative program. In paral-
lel programming terms, P2 supports the Single-Program-Multiple-
Data (SPMD) model of parallel computation.

The P2 engine at each node consists of a compiler—which parses
programs and physically plans them—a dataflow runtime engine,
and access methods. The original P2 compiler was monolithic and
implemented in an imperative language (C++). The subject of this
work is the replacement of that monolithic compiler with a runtime-
extensible compiler framework that admits declaratively-specified
optimizations, as well as compilation stages that perform functions
other than performance optimization. In this section, we highlight
the distinguishing features of the OverLog language, as well as the
P2 dataflow executor and access methods.

2.1 OverLog, Revisited
Our original paper on P2 presented OverLog in an ad-hoc man-

ner as an event-driven language [25]. In a subsequent paper, we
provided a syntax and declarative semantics for a subset of Over-
Log calledNetwork Datalogthat supported distributed Datalog pro-
grams with aggregation that could be laid out on network links [24].
Since that time, we have modified the OverLog language and the P2

materialize(link,infinity,infinity,keys(1,2)).
materialize(path,1,infinity,keys(1,2,3)).
materialize(shortestPath,1,infinity,keys(1,2,3)).

link (@"localhost:10000", "localhost:10001").
link (@"localhost:10001", "localhost:10002").
...

r1 path(@X,Y,P,C) :- link (@X,Y,C), P := f cons(X,Y).

r2 path(@X,Y,P,C) :-
. link (@X,Z,C1), path(@Z,Y,P2,C2),
. f contains(X,P2) == false,
. P := f cons(X,P2), C := C1 + C2.

r4 minCostPath(@X,Y,a min<C>) :-
. path(@X,Y,P,C).

r5 shortestPath(@X,Y,P,C) :-
. minCostPath(@X,Y,C), path(@X,Y,P,C).

Query: shortestPath(@LOCALHOST,"localhost:10000",P,C).

Figure 1: Shortest path program in OverLog. a prefixes in-
troduce aggregate functions andf prefixes introduce built-in
functions.

runtime semantics a fair bit in an attempt to merge practical matters
from networking with declarative semantics. Much of this work is
documented in Loo’s dissertation [23], the remainder is reflected in
the public P2 code release. In this section we overview the current
semantics of OverLog that are relevant to our discussion here.

OverLog is based on the traditional recursive query language,
Datalog; we assume a passing familiarity with Datalog in our dis-
cussion. As in Datalog, an OverLogprogramconsists of a collec-
tion of deductionrulesthat define the set of all derived tuples from a
base set of tuples calledfacts(see Figure 1 for an example OverLog
program used in what follows). Each rule has abodyon the right of
the:- divider, and aheadon the left; the head represents tuples that
can be derived from the body. The body is a comma-separated list
of terms; a term is either apredicate(i.e., a relation), acondition
(i.e., a relational selection) or anassignment2. OverLog introduces
some notable extensions to Datalog that we describe next, to illus-
trate in more detail the particular language for which we are writing
a metacompiler.

Horizontal partitioning —As in the Network Datalog descrip-
tion mentioned above [24], OverLog’s basic data model consists
of relational tables that are partitioned across the nodes in a P2
network. Each relation in an OverLog rule must have one attribute
that is preceded by an “@” sign. This attribute is called thelocation
specifierof the relation, and must contain values in the network’s
underlying address space (e.g., IP addresses for Internet settings,
802.13.4 addresses for sensor networks, hash-identifiers for code
written atop distributed hash tables, etc.). Location specifiers de-
scribe the horizontal partitioning of the relation: each tuple is stored
at the address found in its location specifier attribute. At a given
node, we call a tuple alocal tuple if its location specifier is equal
to the local address. Network communication is implicit in Over-
Log: tuples must be stored at the address in their location specifier,
and hence the runtime engine has to send some of its derived tuples
across the network to achieve this physical constraint. Syntactic
tests and transformations (“localization”) ensure that a set of rules
can be maintained in a manner consistent with its location specifiers
and network topology [24], in environments that lack all-to-all net-
work connectivity. We reimplemented localization declaratively in

2OverLog’s assignments are strictly syntactic replacements of strings with
expressions; they are akin to “#define” macros in C++.

2



Evita Raced, via 28 OverLog rules (104 lines).
Soft State, Events, and Fixpoints—Associated with each Over-

Log table is a “soft-state” lifetime that determines how long (in sec-
onds) a tuple in that table remains stored before it is automatically
deleted. Lifetimes can vary from zero to infinity. Zero-lifetime ta-
bles are referred to aseventtables, and their tuples are calledevents;
all other tables are referred to asmaterializedtables. OverLog con-
tains amaterialize declaration that specifies the lifetime of a ma-
terialized table. In OverLog, events are defined to occur one-at-a-
time betweenfixpoint computations at a given node. Hence each
fixpoint computation on the OverLog rules operates with a tradi-
tional, static set of stored tuples: (a) the local tuples in materialized
tables whose lifetime has not run out, (b) at most one local event
fact acrossall event tables (thecurrentevent being processed), and
(c) any derived local tuples that can be deduced from (a) and (b) via
the program rules. This captures the semantics of OverLog on each
network node individually. As of the time of writing, P2 only pro-
vides semantic guarantees across nodes in the network for mono-
tonic OverLog programs (without negation or aggregation) [24],
and for “local-only” programs that never repartition data. Exten-
sions on this front are an open area of research, but not directly rel-
evant to Evita Raced, which currently consists of local-only rules.

Stratification—Like many Datalog systems, P2 only supports
programs whose use of negation and aggregation is stratified [34],
that is, there is no aggregation or negation on a recursive cycle of
head/body rule dependencies. Checking this property is very easy
in Evita Raced; it is a transitive closure program on the rule graph,
which we implemented in 5 OverLog rules (27 lines).

Deletions and Updates—Like SQL, OverLog supports set-
oriented expressions that identify tuples to be deleted or updated.
To this end, any OverLog rule in a program can be prefaced by
the keyworddelete. The delete rule body specifies facts to be
deleted. In addition to deletes, OverLog’smaterialize statement
supports the specification of a primary key for each relation, and
these relations can appear in the heads of rules. Any derived tu-
ple for that relation that matches an existing tuple on the primary
key is intended toreplacethat existing tuple. For semantic simplic-
ity, OverLog deletions are defined to occur only after the fixpoint
computation of the program that generates them.

Status—In the interest of full disclosure, we note that the cur-
rent P2 release has a design flaw in the deferral of processing cer-
tain tuples, which compromises its ability to achieve two aspects of
the described semantics. Specifically, it may (a) process multiple
strata on one node at the same time, and (b) removedelete tuples
from materialized tables before the end of the fixpoint that gener-
ates them. This flaw does not directly affect the work described in
this paper. The fix for this problem has been designed, but was not
implemented at the time of publication.

2.1.1 A Canonical Example
To illustrate the specifics of OverLog, we briefly revisit a

shortest-paths example (Figure 1). The threematerialize state-
ments specify thatlink, path andshortestPath are all tables with
infinite lifetime and infinite storage space3. For each table, the po-
sitions of the primary key attributes are noted as well. Ruler1

can be read as saying “if there is a link tuple of the form(X,Y,C)
stored at any nodeX, then one can derive the existence of a path
tuple (X,Y,P,C) at nodeX, whereP is the output of the function

3The third argument of materialize optionally specifies a constraint on the
number of tuples guaranteed to be allowed in the relation. TheP2 runtime
replaces tuples in “full” tables according to a FIFO order asneeded during
execution; replaced tuples are handled in the same way as tuples displaced
due to primary-key overwrite.

f cons(X,Y)—the concatenation ofX andY.” Note that ruler1 has
the same location specifiers throughout, and consequently involves
no communication. This is not true of the recursive ruler2, which
connects anylink tuple at a nodeX with any path tuple at a neigh-
boring nodeZ, the output of which is to be stored back atX. Such
rules can be easily rewritten (localized) so that the body predicates
all have the same location specifier [24, 26]; the only communica-
tion then is shipping the results of the deduction to the head rela-
tion’s location specifier.

2.2 The P2 Runtime Engine
The P2 runtime is a dataflow engine that was based on ideas from

relational databases and network routers; its scheduling and data
hand-off closely resemble the Click extensible router [18]. Like
Click, the P2 runtime supports dataflowelements(or “operators”)
of two sorts: pull-based elements akin to database iterators [13],
and push-based elements as well. As in Click, whenever a pull-
based element and a push-based element need to be connected, an
explicit “glue” element (either a pull-to-push driver, or a queue el-
ement) serves to bridge the two. More details of this dataflow co-
ordination are presented in the original P2 paper [25].

2.2.1 Dataflow Elements
The set of elements provided in P2 includes a suite of operators

familiar from relational query engines: selection, projection, and
in-memory indexes. P2 supports joins of two relations in a manner
similar to the symmetric hash join; it takes an arriving tuple from
one relation, inserts it into an in-memory table for that relation,
and probes for matches in an access method over the other relation
(either an index or a scan). To this suite, we added sorting and
merge-joins, which allow us to explore some traditional query op-
timization opportunities and trade offs as discussed in Section 4.1.

Given its focus on network protocols and soft state, P2 currently
has no support for persistent storage other than the ability to read in-
put streams from comma-separated-value files. Its tables are stored
in memory-based balanced trees that are instantiated at program
startup; additional such trees are constructed by the planner as sec-
ondary indexes to support query predicates.

P2 also provides a number of elements used for networking,
which handle issues like packet fragmentation and assembly, con-
gestion control, multiplexing and demultiplexing, and so on; these
are composable in ways that are of interest to network protocol
designers [7]. The P2 planner currently assembles these network
elements in a fixed manner so that each P2 node has a single IP
port for communication, and the dataflow graph is “wrapped” in el-
ements that handle network ingress with translation of packets into
tuples, and network egress with translation of tuples into packets.

2.2.2 The P2 Event Loop
The control flow in the P2 runtime is driven by a fairly traditional

event loop that responds to any network or timer event by invoking
an appropriate dataflow segment to handle the event.

The basic control loop in P2 works as follows:
1. An event is taken from the system input queue, correspond-

ing to a single newly arrived tuple to be inserted in a table.
We will refer to this tuple as thecurrent eventtuple.

2. The value of the system clock is noted in a variable we will
call thecurrent time. Soft-state tuples whose lifetime is over
as of the current time are skipped (and removed from internal
storage) during subsequent processing.

3. The current event tuple is, logically, appended to its table.
4. The dataflow corresponding to the OverLog program is initi-

ated and runs to a local fixpoint following traditional Datalog

3



Program

ID

Name

Stage

Plan

Text

Depends

Fact

ID

Tuple

TableID

Name

Primary 
key Index

ID

Key Type

Predicate

ID

Name Access 
Method

Attributes

Assign

ID Type Key

Rule

IDName

Term 
Count

Defines

Select

Bool ID

DefinesPosition Position

DefinesPosition

Refers

Asserts Defines

Defines

Refers

Defines Position
Head 
ID

Figure 2: ER Diagram of a query plan in P2.

semantics, with the following exception: during processing,
any non-local derived tuples are buffered in asend queue;
local deletions are postponed until the end of the fixpoint.

5. Upon fixpoint completion, the contents of the send queue are
transmitted over the network, and at that point any buffered
local tuple deletions are performed.

As noted above, our current prototype lacks deferred deletions.

3. DECLARATIVE COMPILATION
Evita Raced is a compiler (i.e., query optimizer and rewriter) for

OverLog that supports a runtime-extensible set of program rewrites
and optimizations, which can themselves be expressed in Over-
Log. A key contribution of this work is the economy of mech-
anism that we achieve via the use of P2’s dataflow runtime sys-
tem to implement the compiler. Two main challenges must be ad-
dressed to make this work. First, all compiler state—the internal
representation of declarative OverLog programs—needs to be cap-
tured in a relational representation so that it can be referenced and
manipulated from OverLog. Second, the (extensible) set of tasks
involved in optimization must itself be coordinated via a single
dataflow program that can be executed by the P2 runtime engine.
Both challenges must be addressed without hindering the function
of those rewrites and optimizations that are implemented in more
traditional, imperative code (e.g., in C++).

In this section we describe the implementation of the Evita
Raced framework, including the schema of the compiler state, the
basic structure of the Evita Raced dataflow graph, and the basic
dataflow fragments needed to bootstrap the optimizer.

3.1 Table-izing Optimizer State
A typical query optimizer maintains a number of data structures

to describe the contents of a query, and to represent ongoing prop-
erties of a query planner including fragments of query plans. Our
first task in designing Evita Raced was to capture this information
in a relational schema.

Figure 2 shows an Entity-Relationship diagram that captures the
properties of an OverLog program. We derived the constraints in

Table 1: The Metacompiler Catalog: tables defining an Over-
Log program and dataflow execution plan.

Name Description Relevant attributes

table Table definitions table id, primary key
index Index definitions index id, table id, keys, type
fact Fact definitions program id, table id, id, tuple
program User program program id, name, stage, text,

description depends, plan
rule Rules appearing program id, rule id, name,

in a program term count, headid
predicate Predicates appearing id, rule id, table id, name,

in a rule position, accessmethod
select Selections id, rule id, boolean, position

appearing in a rule
assign Assignment statements id, rule id, variable,

appearing in a rule value, position

the diagram directly from the semantic analysis rules enforced in
the original P2 compiler; we discuss a few of them here for il-
lustration. An OverLogrule must appear in exactly oneprogram.
A selectterm (e.g.,f contains(X,P2) == false in Figure 1) is a
Boolean expression over attributes in the predicates of the rule, and
must appear in exactly onerule. The diagram indicates that apred-
icate must also appear in a uniquerule, and that it may possibly
reference a singletable. A predicate that references a table is called
a table predicate(or amaterialized predicate), while one that does
not is called anevent predicate. An index is defined over exactly
one table, and atable defines at least one index (namely the pri-
mary key index, which P2 always constructs). Some relations may
contain a number offactsat startup, each of which must belong to
a single program and must reference a single table.

The conversion of the ER diagram to relational format is straight-
forward. Table 1 lists the relations that capture the entities in the
ER diagram; we refer to this as theMetacompiler Catalog. We
modified P2 to create these tables at system startup, and they are
accessible to any optimization programs that get added to the sys-
tem. The primary key columns are bold in Figure 2 and Table 1.

3.2 Metacompiler Architecture
Optimization logic expressed in OverLog is declarative, and

Evita Raced realizes this logic by converting it to a dataflow pro-
gram to be executed by the P2 dataflow subsystem. In this section
we describe how Evita Raced represents query optimization pro-
grams as dataflow, and also the way it orchestrates multiple differ-
ent optimization programs through the P2 dataflow framework.

An optimizer built using Evita Raced is composed of an exten-
sible number ofstages, each of which performs some compilation
task on the input program. One way to write an Evita Raced stage
is to construct a monolithic program in C++, and encapsulate it
in a single dataflow element; this is how we implement certain
base stages required for bootstrapping, as described in Section 3.3.
However, the power of Evita Raced comes from its support for
stages written in OverLog, which, in addition to being compactly
expressed in a high-level language, can be loaded into a running
P2 installation at any time. A stage programmer registers a new
stage with Evita Raced by inserting a tuple into theprogramrela-
tion. This tuple contains a unique identifier (program id), a name
(name), a list of stage dependencies (depends) , and the program
text (text). Because theprogram relation is used to convey par-
tial compilation results from stage to stage as well,program tuples
also contain attributes for the name of the compiler stage operating
on the program (stage), and the stage’s final physical plan (plan),
though these attributes are empty when the programmer first cre-

4



ates the tuple. Section 3.2.2 describes thedepends attribute, and
its use in the installation of new compiler stages. Theplan attribute
pertains to the physical planner stage, which is described in Sec-
tion 3.3.2. Theprogramtable is also used to store users’ OverLog
programs (not compiler stages); for these programs, thedepends

attribute must be empty. We next describe the interfaces to an Evita
Raced compiler stage, after which we discuss the way that multiple
such stages are coordinated.

3.2.1 The Stage API
At base, an Evita Raced stage can be thought of as a stream

query that listens for a tuple to arrive on an event stream called
<stage>::programEvent, where<stage> is the name of the stage.
The<stage>::programEvent table contains all the attributes men-
tioned in theprogram table. When such a tuple arrives, the stage
runs its dataflow over that event and the tables in the Metacompiler
Catalog, typically modifying catalog tables in some way, until it
inserts a newprogram tuple, containing the name of the stage in the
stage attribute, into the program table. This insertion indicates the
completion of the stage.

To represent this behavior in a OverLog stage, a relatively simple
template can be followed. An OverLog stage must have at least one
rule body containing the<stage>::programEvent predicate. This
represents the ability of the stage to react to new programs arriving
at the system. In addition, the stage must have at least one rule
with a program head predicate, which derives a newprogram tuple
when signaling stage completion. OverLog stages may be recursive
programs, so they run to fixpoint before completing.

3.2.2 Stage Scheduling
In many cases, optimization stages need to be ordered in a par-

ticular way for compilation to succeed. For example, aParserstage
must run before any other stages, in order to populate the Metacom-
piler Catalogs, and anInstaller stage must follow all other stages,
since by installing the dataflow program into the P2 runtime it ter-
minates a compilation session. We will see other specific prece-
dence constraints in Section 4.

A natural way to achieve such an ordering would be to “wire
up” stages explicitly so that predecessor stages directly produce
<stage>::programEvent tuples for their successors, in an explicit
chain of stages. However, it is awkward to modify such an explicit
dataflow configuration upon registration of new stages or prece-
dence constraints. Instead, Evita Raced captures precedence con-
straints asdatawithin a materialized relation calledStageLattice,
which represents an arbitrary partial order (i.e., an acyclic binary
relation) among stages; this partial order is intended to be a lattice,
with theParseras the source, and the dataflowInstalleras the sink
(we review built-in stages in Section 3.3).

To achieve the dataflow connections among stages, the built-in
StageSchedulerelement listens for updates to theprogram table,
indicating the arrival of a new OverLog program or the completion
of a stage for an on-going program compilation, as described in
the previous section. TheStageScheduleris responsible for shep-
herding stage execution according to theStageLattice. Given a
program update, it joins it with the lattice to identify next stages
that can be invoked, and generates a<stage>::programEvent tu-
ple that will start that stage; the contents of these tuples are the
same as those of the updatedprogram tuple. If the join with the
StageLattice produces more than one tuple, then theStageSched-
uler arbitrarily chooses one of the next stages to run.

The StageScheduler and all compilation stages (built-in or
runtime-installed) are interconnected via the simple dataflow illus-
trated in Figure 3. P2 uses this dataflow to schedule all OverLog

Demux

program install::
programEvent

planner::
programEvent

parse::
programEvent

program

<stage>::programEvent

program

Parser

Physical 
Planner

Installer

Stage 
Scheduler

program

Figure 3: The cyclic dataflow of Evita Raced, showing only the
default compilation stages.

programs, including compiler stages and user programs. It con-
sists of a C++ “demultiplexer” that routes tuples from its input (on
the left) to individual event handlers listening for particular tuple
names. Arrows leaving the Demux element in the figure contain
the name of the tuple for which the four components to the right
listen.

Consider the simplicity of this approach as compared to the ex-
plicit stage-wiring sketched above. When a new compilation stage
is installed at runtime, the Installer (Section 3.3.3) simply connects
it to theDemuxelement, listening for<stage>::programEvent tu-
ples, before updating the corresponding tuple in theprogram ta-
ble. When the StageScheduler receives the updatedprogram tu-
ple, it uses the value of itsdepends attribute to insert appropri-
ateStageLattice tuples into the corresponding table of the system
catalog. Subsequentprogram tuples will be redirected to the newly
installed compiler stage (as<stage>::programEvent tuples) by the
StageScheduler as the updatedStageLattice dictates. Together,
the StageScheduler and the Demux work much like aneddyopera-
tor [4]: they achieve flexible dataflow operator ordering via encap-
sulated routing decisions, rather than dataflow edges. In an eddy,
this flexibility enables dynamic runtime reordering. In Evita Raced,
it simplifies the installation of new compiler stages at runtime.

To sum up, the life of a program compilation starts when a
user submits aprogram tuple to the system with anull stage at-
tribute. The StageScheduler receives thatprogram tuple and gen-
erates aparse::programEvent tuple (the Parser being the source
stage in the lattice), which is routed by the Demux element to the
Parser stage. When the Parser is done, it updates thatprogram

tuple in the corresponding table, changing the tuple’s attribute to
“Parser.” The StageScheduler receives theprogram tuple, and uses
theStageLattice table to decide how to proceed; in the case of the
default stages in Figure 3, it routes aplanner::programEvent to
the Demux and eventually the Physical Planner, which goes around
the loop again to the Installer. Finally, once the Installer is done
and notifies the StageScheduler via aprogram tuple with thestage
attribute set to “Installer,” the StageScheduler concludes the com-
pilation process. If the OverLog program being parsed is itself a
new compilation stage (indicated by a non-nulldependsattribute in
theprogram tuple), then after installation, the scheduler updates the
StageLattice.

3.3 Compiler Bootstrapping
The previous architectural discussion neatly sidestepped a nat-

ural question: how is an Evita Raced compiler containing many
OverLog stages bootstrapped, so that it can compile its own Over-
Log specification? As in many metaprogramming settings, this
is done by writing a small bootstrap in a lower-level language.
Evita Raced is initialized by a small C++ library that constructs

5



the cyclic dataflow of Figure 3, including the three default stages
shown, which are themselves written in C++. Together, this code is
sufficient to compile simplified OverLog (local rules only, no opti-
mizations) into operational P2 dataflows. We next describe each of
these stages in a bit more detail, since they form the foundation of
the Evita Raced runtime.

3.3.1 Parser
The Parser passes the program text it receives in the

programEvent through a traditional lexer/parser library specified
using flex and bison; this library code returns a standardabstract
syntax treerepresentation of the text. Assuming the Parser does not
raise an exception due to a syntax error, it walks the abstract syn-
tax tree, generating Metacompiler Catalog tuples for each of the
semantic elements of the tree. In addition to recognizing the dif-
ferent terms of each rule, the parser also annotates each term with
its position in the given program. By convention, the first term of
a rule body is the event predicate of the rule, if one exists. By the
same convention, the term in the last position for a rule is the head
predicate.

3.3.2 Physical Planner
The Physical Planner stage is responsible for doing a naı̈ve trans-

lation of Metacompiler Catalog tuples (i.e., a parsed OverLog pro-
gram) into a dataflow program. It essentially takes each rule and
deterministically translates it into a dataflow graph language, based
on the positions of terms in the rule.

More specifically, for each rule the Planner considers each term
(predicate, selection or assignment) in order of position attribute.
The predicate representing the event stream is always planned first,
and registers a listener in the Demux element (recall Figure 3). The
terms following the event stream are translated, left-to-right, into a
sequence of joins in the same way that the original P2 system did,
so we do not address them further here.

We do mention three specific details. First, whereas the origi-
nal P2 system translated a logical query plan directly to a software
dataflow structure in C++, we chose to create an intermediate, tex-
tual representation of the dataflow, akin to Click’s dataflow lan-
guage, which can be examined and manipulated by programmers
interested in modifying compiler output.

Second, unlike the original P2 system, we have introduced a
number of access methods for in-memory tables. Ourpredicate

relation contains the access method as one of the attributes, and we
have modified the P2 physical planner to choose the appropriate
dataflow element that implements the given access method.

Third, as mentioned before, OverLog rules may consist only of
materialized predicates (e.g., “table1 :- table2, table3.”). An
additional compiler stage written in OverLog converts such rules
to (multiple) event rules via the semi-naı̈ve evaluationdelta rewrite
of Loo et al. [24], e.g., “table1 :- delta table2, table3.”
and “table1 :- table2, delta table3.”. delta table denotes
a stream conveying insertions, deletions, or timeout refreshes to tu-
ples of the tabletable. The delta rewrite compiler stage is written
in OverLog using9 rules (54 lines) and it is the first stage installed
following compiler bootstrap.

3.3.3 Plan Installer
Given the output of the Physical Planner in the dataflow speci-

fication language, what remains is to parse that text, and construct
the corresponding dataflow graph of C++ elements. We have imple-
mented this “physical plan compiler” in C++, and housed it within
the Installer stage. Once these elements and their connections are
instantiated, the Installer stage connects them to the Demux.

3.4 Discussion
The declarative metacompilation concept in Evita Raced nat-

urally caused us to design an extensibility architecture based on
data modeling and dataflow, rather than library loading and con-
trol flow (function calls). While rule-based approaches have
been implemented before to make optimizers more easily extensi-
ble [10, 12, 14, 22, 27], the internal implementation of Evita Raced
is unique in its economy of mechanism. We aggressively reuse
the native dataflow infrastructure, which both executes optimiza-
tion code, and orchestrates stages via precedence tables and the
StageScheduler cycle. One benefit of this design is that the Evita
Raced infrastructure itself adds very little code (and code main-
tenance overhead) to the P2 engine: beyond the StageScheduler
and the three bootstrap stages, no additional extensibility code was
added to P2 to support Evita Raced. A second benefit is that even a
major addition to the Evita Raced compiler entails minimal modi-
fication to the runtime state: only the addition of a pair of dataflow
edges to connect up the new stage, and the insertion of precedence
tuples in a single table. We return to these points in Section 6.

4. QUERY COMPILATION STAGES
Having described the Evita Raced infrastructure, we now turn

our attention to the issue of specifying query optimizations in Over-
Log. In this section we describe three of the compiler stages
we have developed for Evita Raced. Section 4.1 discusses a dy-
namic programming optimizer stage akin to that of System R [29]
along with a modification to use a top-down search strategy akin
to that of Cascades [30]. Section 4.2 describes a stage that per-
forms the magic-sets rewrite on recursive OverLog programs [34].
Section 4.3 describes a protocol optimization specific to a wire-
less environment and reports on its benefit in a real sensor network
setting. We conclude with a brief discussion of the compilation
overhead added by the metacompiler in Section 4.4.

4.1 Query Optimization
The System R optimizer paper by Selinger, et al. is the canoni-

cal textbook framework for database query optimization [29]. The
paper first laid out the notion that query optimization can be de-
composed into two basic parts: query plan cost estimation and plan
enumeration. While this algorithm is traditionally implemented in-
side the heart of a database system via a traditional procedural pro-
gramming language, both of these tasks are naturally specified in a
declarative query language. To perform cost estimation, System R
requires data statistics like relation cardinalities and index selectiv-
ities; OverLog is a fitting language to collect these statistics, es-
pecially in a distributed fashion over all relation partitions. In this
section we describe a fairly faithful implementation of the Selinger
paper written in OverLog. In Section 4.1.3 we extend this descrip-
tion with better selectivity estimation techniques using histograms.
Finally, Section 4.1.4 presents a description of an optimizer stage
that employes a top-down search strategy.

We focus first on the basic dynamic programming (DP) algo-
rithm for the state-space enumeration at the heart of the System
R optimizer, including the standard features for handling multiple
access and join methods, and the “interesting orders” in subplans
(which could be naturally generalized to other physical properties).
This algorithm enumerates query plans for increasingly-large sub-
goals of the query optimizer. The task of the algorithm is to fill in a
DP table with the lowest-estimated-cost query plan among all plans
producing anequivalentoutput relation (i.e., plans composed of the
same query terms and physical properties). In the System R opti-
mizer, theprinciple of optimalityis assumed to hold: the lowest-
cost solution to some plan will be built from the optimal solutions

6



pg2 plan(@A, Pid, Rid, f idgen(), PlanID, "Predicate", PredID,
. Plan, Schema, Card, Cost,
. OuterPos+1, AM, null, Sort) :-
. bestPlanUpdate(@A, Pid, Rid, PlanID),
. plan(@A, Pid, Rid, PlanID, , , , OuterPlan,
. OuterSchema, OuterCard, OuterCost, OuterPos,
. , ),
. rule(@A, Rid, Pid, , , , , TermC, ),
. predicate(@A, PredID, Rid, , , Tid, ,
. PredSchema, PredPos, , ),
. PredPos < TermC,
. table(@A, Tid, , , , , TCard, ),
. f contains(PredID, OuterPlan) == false,
. Card := OuterCard * TCard / 10,
. Cost := OuterCost + (OuterCard * TCard),
. AM := f cons("SCAN", null),
. Plan := f cons(PredID, OuterPlan),
. Schema := f merge(OuterSchema, PredSchema),
. Sort := null.

pgn planUpdate(@A, Pid, Rid, PlanID, SubPlanID, Sort) :-
. plan(@A, Pid, Rid, PlanID, SubPlanID, , ,
. , , , , , , Sort).

Figure 4: Scan (nested loop) join method.

to subplans. Thus dynamic programming can proceed in “bottom-
up” fashion. The process is driven by having each rule contain an
event predicate that listens for the generation of new subplans ofk

terms. For a given rule, the optimizer generates plans of sizek + 1

terms by appending a single, as yet unused term from the rule body
to an optimal plan of sizek terms.

We first describe the rules for plan generation and conclude with
the rules for optimal plan selection.

4.1.1 Plan Generation
Theplan table stores query plans for each rule in the program.

Among other things, it defines the physical properties (i.e., access
methods, sort order, cost) associated with the plan and the set of
terms (i.e., table predicates, selections, and assignments) that par-
ticipate in the plan. The optimization begins when a tuple on the
programEvent event stream is received. When such a tuple is re-
ceived it is joined with therule table to get all rules in the program,
followed by thepredicate table to obtain all table predicates in the
rule. From this join result, aplan tuple is formed for each rule con-
taining the rule’s streaming predicate. This initialplan tuple seeds
the bottom-up search strategy for each rule.

The optimizer is defined by a set of plan generation rules that
extend the bestk-term plan with a new thus far unused term from
the rule body; examples appear in Figures 4 and 5. Each such rule
joins thebestPlanUpdate event predicate (generated when a new
k-term plan is found) with unused terms in the rule. If the new
term considered is a predicate, then the new plan must define a join
method that connects the optimal subplan and the predicate table
via a physical join operator. The join methods we presently support
are scanned and index-based nested-loop-joins, as well as merge-
join. The rules for plan generation from rule predicates are defined
around the supported join methods. Due to space constraints, we
only show the rules that generate plans for nested-loop-join and
index nested-loop-join access methods.

A nested-loop-join plan is generated for any table predicate ap-
pearing in the rule body. Rulepg2 in Figure 4 generates a (scanned)
nested-loop-join plan on all rule body table predicates not men-
tioned in theOuterPlan variable of theplan predicate representing
the subplan. Theplan tuple representing the subplan is joined
with the predicate table (to get all predicate terms in the rule
body) followed by another join with thetable table (to get each

pg3 plan(@A, ...) :-
. ...
. table(@A, Tid, Tablename, , , , TCard, Sort),
. index(@A,Iid,Tablename,Key,Type,Selectivity),
. f contains(PredID, OuterPlan) == false,
. f indexMatch(OuterSchema, PredSchema, Key),
. Card := OuterCard * (Selectivity * TCard),
. Cost := OuterCost + Card,
. AM := f cons(Type, Iid),
. ...

Figure 5: Index join method (diff from Figure 4).

table’s statistics). The result of these join operations produce all
term predicates mentioned in the rule that have a matching table
identifier definition. The selection predicatePredPos < TermC en-
sures that we do not join with the rule’s head predicate (which is
last in the rule’s terms, by convention). The functionf contains

tests for containment of the predicate identifier (PredID) in the sub-
plan (OuterPlan). Any tuples that meet the constraints imposed
by this rule generate a newplan tuple with the “SCAN” access
method (since the predicate table will be scanned for each outer
tuple). Each new plan tuple is given a newPlan variable that ap-
pends thePredID to theOuterPlan subplan variable . The cardinal-
ity (Card) and cost (Cost) estimates are given values based on the
simple costing measures suggested by System R in the absence of
indices; clearly these expressions can be enhanced, as we discuss
in Section 4.1.3.

An index-nested-loop-join plan is generated by rulepg3 in Fig-
ure 5. The main difference between this rule and rulepg2 is the
additionalindex predicate, which adds index definitions to the re-
sulting table predicate tuples. (The common prefix ofpg2 is omit-
ted in Figure 5 to save space.) The functionf indexMatch tests
if the index can be used to perform the join using attributes from
the best plan schema (OuterSchema) and attributes from the pred-
icate table (PredSchema). Any tuple results from this plan are as-
signed cardinality and cost estimates based on some cost function,
which uses the additional index selectivity information given by
theSelectivity variable defined by theindex predicate. We also
support range predicates in our index-nested-loop-joins but do not
show the 3 relevant rules here.

A merge-join performs a join of a plan with a table predicate
mentioned in the rule body along some sorting attribute. The tuple
set from the outer plan and the predicate table must be ordered by
the sorting variable. The output of a merge-join operation preserves
the sorting attribute order. Therefore, theplan predicate generated
by the merge-join rule includes the sorting attribute in the value
of the Sort variable. We note that theSort variable in thetable
predicate identifies the sorting attribute of the table. Anull valued
Sort variable, in either the outer relationplan predicate or the inner
relationtable predicate, means that the relation is unordered, and
must be explicitly sorted prior to the merge-join operator. The cost
of a merge-join operator incorporates the cost of explicit sorting of
either relation as needed.

4.1.2 Best plan selection
Figure 6 shows two rules that select the best plan from a set of

equivalent plans, in terms of the output result set and the order-
ing properties of the result set. ThebestCostPlan predicate picks
the plan with the minimum cost from the set of equivalent plans.
This aggregation query groups along the program identifier, rule
identifier, plan list, and sort keys. The functionf setequals tests
whether the set of term identifiers in its two input plans are the
same, regardless of the order. The inclusion of the sort attribute

7



bp1 bestCostPlan(@A, Pid, Rid, Plan1, Sort1, a min<Cost>) :-
. planUpdate(@A, Pid, Rid, , Plan1, Sort1),
. plan(@A, Pid, Rid, , , , ,
. Plan2, , , Cost, , , Sort2, ),
. f setequals(Plan1, Plan2), Sort1 == Sort2.

bp2 bestPlan(@A, Pid, Rid, PlanID, Plan2, Cost) :-
. bestCostPlan(@A, Pid, Rid, Plan1, Sort1, Cost),
. plan(@A, Pid, Rid, PlanID, , , ,
. Plan2, , , Cost, , , Sort2, ),
. f setequals(Plan1, Plan2), Sort1 == Sort2.

bp3 bestPlanUpdate(@A, Pid, Rid, PlanID) :-
. bestPlan(@A, Pid, Rid, PlanID, , ).

Figure 6: Best plan selection.

in the group condition ensures the handling of what Selinger calls
“interesting orders” [29], along with optimal subplans.

The aggregation rulebp1 triggers whenever a new plan is added
to theplan table (indicated by theplanUpdate event). Then, the
bestCostPlan predicate is used in rulebp2 to select the identifier of
the best plan, which is inserted into thebestPlan table. An update
to thebestPlan table triggers a newbestPlanUpdate event that the
plan generation rules, described in Section 4.1.1, use to build new
candidate plans.

4.1.3 Improving Selectivity Estimation
For equality selection predicates, our System R rules above sup-

port selectivity estimates using a uniform distribution estimator
given by the index. For more precise estimates and to handle range
predicates, we have defined declarative rules that produce equi-
width histograms (ew-histograms); additional histogramming rules
could be added analogously. The creation of an ew-histogram is
triggered by the installation of a fact in a metadata table of the ew-
histograms defined in the system. The metadata table contains the
parameters of the histogram (i.e., the table name, the attribute po-
sition, and the number of buckets). For example, the fact

sys::ewhistogram::metadata(@LOCALHOST, "pred", 3, 10).

creates a10 bucket equi-width histogram on tablepred for the at-
tribute in the third position.

Each fact in the ew-histogram table triggers Evita Raced rules
that themselves generate new rules to create ew-histograms (deter-
mining bucket boundaries based on the bucket count and the min
and max values of the attribute), and to maintain bucket counts (per-
forming a count aggregation over the table attribute and grouped
by the bucket boundaries). The compiler stage that generates ew-
histograms in this fashion consists of23 rules (92 lines). The his-
togram data is stored in relational format with each row correspond-
ing to a single bucket. To exploit these histograms, the cost and se-
lectivity estimation in theplan generation rules in Figures 4 and 5
can be modified to incorporate a join with the histogram data rela-
tion, and based on the bucket boundaries obtain density estimations
for a given selection predicate.

4.1.4 Top-down Optimization
The bottom-up, dynamic-programming search strategy is a nat-

ural fit to a Datalog-based rule language. However, a top-down
Cascades-style optimization strategy [30] is just as natural and in-
tuitive in Evita Raced. We briefly describe how to implement the
Cascades branch-and-bound algorithm in OverLog. The full opti-
mization consists of33 rules (204 lines).

In the Cascades optimizer, plans are classified intogroups. A
group is an equivalence class of plans that produce the same result.

c1 branch(@A, Pid, Rid, f groupID(SubPreds), 0,
. SubPreds, Bound) :-
. winner(@A, Pid, Rid, GroupID, Cost),
. branch(@A, Pid, Rid, GroupID, Pos, Preds, Bound),
. Pos < f size(Preds), Bound := Cost,
. SubPreds := f removePredicate(Pos, Preds).

Figure 7: Branch and bound generation in top-down opti-
mization.

The optimizer generates groups in a top-down order and within
each group it searches for the cheapest plan, thewinner. An upper
bound is assigned to each group. A plan is pruned if its cost ex-
ceeds the group upper bound. The upper bound for a given group
is initialized to the parent group upper bound (the root group upper
bound is initialized to a cost of infinity) and continuously updated
as new winner plans are discovered. The optimization terminates
when the root plan group has fully explored or pruned all possible
plans. The winner plan in the root group is then chosen to be the
best-cost plan.

Figure 7 gives the single recursive rule that generates groups
of plans in a top-down order (we omit the remaining rules due
to space). Abranch tuple contains the information that identi-
fies a given group. Specifically, it identifies the group (GroupID),
a branch position (Pos), the predicates (Preds) in the plan, and a
bound (Bound). A separatecost relation maintains the cost of plans
computed from the physical properties assigned to it during the op-
timization. A plan of sizek is formed out of the current best-cost
plan of sizek − 1 and the best-cost single predicate plan4. A new
plan will only be generated if its cost is less than the bound value
in the branch tuple containing the group to which the new plan be-
longs.

Suppose the initial query isA 1 B 1 C. The optimizer first ini-
tializes thewinner relation with a tuple for each group (i.e.,ABC,
AB, AC, BC, A, B, C) each having a cost ofinfinity. A sin-
gle rule seeds the recursive rulec1 in Figure 7 by initializing the
branch relation with a tuple that defines the root group (i.e.,ABC)
and starts the optimization at position0 with the predicates (A, B,
C) and a bound ofinfinity. The recursion proceeds in a top-down
fashion. In the first step a newbranch tuple is generated that re-
moves the predicate in position0 generating the groupBC. An-
other rule will generate a branch groupA at the same time. The
recursion returns when awinner for groupABC has been discov-
ered, which occurs when groupsA andBC have been fully ex-
plored and the next branch position (e.g., 1) is set for groupABC.
A group has been fully explored when its branch position reaches
the end. As new winners are discovered theBound variable is up-
dated with the winning cost before proceeding to the next predicate.

4.2 Magic-Sets Rewrite
The magic-sets rewrite is an optimization that can reduce the

amount of computation in recursive Datalog queries, via a gen-
eralization of basic “selection pushdown” ideas. It combines the
benefits of top-down and bottom-up evaluation of logic [34].

Datalog-oriented systems like P2 perform a bottom-up (forward
chaining) evaluation on each rule, starting with known facts (tu-
ples), and recursively resolving body predicates to the head pred-
icate. The advantage of this strategy is that the evaluation can be
data driven (from known facts to possible deductions) in an opti-
mizable set-oriented dataflow manner, and will not enter infinite
loops for a class of statically verifiablesafeprograms. For exam-
ple, the query in the shortest path program (Figure 1) asks for the

4The base case of this recursion costs single-table plans.

8



1

2

3

4 5 6 7 8 9 10

Figure 8: Experimental topology.

shortest path from all nodes to nodelocalhost:10000. A bottom-
up evaluation applies thelink tuples to ruler1, creating initial
path tuples. The program runs until it reaches a fixpoint. Any
shortestPath tuples matchinglocalhost:10000 on their second
attribute match the programmer’s query. A deficiency of bottom-
up evaluation is that it will generate somepath andshortestPath
tuples that do not havelocalhost:10000 in the second attribute and
therefore cannot satisfy the programmer’s query. These irrelevant
deductions are avoided in top-down evaluation.

Magic-sets rewriting adds extra selection predicates to the rules
of a program to avoid the generation of irrelevant deductions. Con-
ceptually, given a rule of the form

Hp :- G1, G2, ..., Gk.

whereHp is the head predicate andG1 . . . Gk are the goal predi-
cates in the order of appearance in the rule, a magic-sets algorithm
intersperses selection predicatess1, . . . sk to generate the rule

Hp :- s1, G1, s2, G2, ..., sk, Gk.

Facts for the new selection predicates are generated according
to bindings of the variables ofHp in the user’s query (e.g.,
localhost:10000), or other identified attribute bindings in the pro-
gram. Appendix A gives further details on the magic-sets algo-
rithm and describes the OverLog rules that perform the main steps
involved in performing the rewrite.

 0

 5

 10

 15

 20

 25

T
up

le
s 

re
ce

iv
ed

Baseline
Magic sets

 0

 5

 10

 15

 20

 25

T
up

le
s 

se
nt

Baseline
Magic sets

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10

T
up

le
s 

ge
ne

ra
te

d

Node ID

Baseline
Magic sets

Figure 9: For each node (node ID onx axis), number of tuples
received (top), sent (middle), and locally generated (bottom) on
the y axis.

4.2.1 Magic Sets in the Network

To understand the effects of this rewrite, we describe two ex-
perimental runs of the shortest-path program in Figure 1, before
and after the magic-sets rewrite. The two programs are executed in
the simple link topology of Figure 8 (node 1 is given the address
localhost:10000). Nodes are started up one at a time in order of
the identifier, and the preloaded database consists of the links pic-
tured. For each experiment we measure the number of tuples sent
and received by each node, as well as anypath tuples constructed.
The latter measure is meant to convey “work” performed by the
distributed program even in local computation that does not appear
on the network (e.g., local tuple computations, storage, and other
dependent actions on those tuples).

The top of Figure 9 shows the number of tuples that each node
receives from the network during shortest-path computation. The
magic-sets rewritten program never causes more tuples to be re-
ceived than the original, and results in increasingly fewer tuples
received as we move to nodes farther away from the clique. That
is because many paths that are generated in the original program to
destinations within the clique other than node1 are pruned early on
and never transmitted all the way to the far end. Similarly, the mid-
dle plot in Figure 9 shows the number of tuples each node trans-
mits. Again, the magic-rewritten program does a lot better. The
inclusion of the magic-sets rewrite reduces the number of sends in
all but one case (node10). The node with identifier10 is the only
node with no incoming links and is therefore never burdened with
network traffic other than its own; as a result, though its received
tuple overhead benefits from magic sets, its transmitted tuple over-
head is unaffected, since the node sends no extraneous path tuples
other than its sole path towards node1. Finally, path storage over-
head is reduced by magic sets everywhere (Figure 9 bottom), since
the rewrite prunes away irrelevantpath tuples both received from
the network, and generated locally.

4.3 Wireless Protocol Optimization
The previous two examples were well developed, traditional op-

timizations from the database literature that have applications in
the networking domain. We now turn to an example taken directly
from networking: optimizing the way in which tuples are sent from
a given source to many destinations in a wireless environment. In
such settings, a sender often has the choice to either communicate
one-to-one directly with each desired receiver (unicastcommuni-
cation), or to communicate one-to-all with every node (broadcast
communication). For unicast, the send and receive costs are pro-
portional to the number ofintendeddestinations, which could be
lower than the size of the entire network. For broadcast, the send
cost is the cost to send a single tuple. However, the receive cost
is proportional to the number of nodes in the network, since ev-
ery node will receive the tuple, even those that are not an intended
destination.

The decision of when to use unicast, broadcast, or evenmulti-
cast—one-to-some instead of one-to-all—can dramatically impact
the design of a system, wireless or wired. For instance, much
research in replicated systems concentrates on when to use each
mode of communication to maximize throughput and minimize re-
sponse times, and how to architect entire protocols around that de-
cision [8, 19]. Moreover, with battery-powered networks such as
wireless sensornets, radio send and receive operations dominate en-
ergy consumption, so minimizing communication cost is a primary
concern [16]. The best choice depends not only upon the number
of intended destinations (which is application-dependent) but also
upon the relative costs of transmission and reception (which is de-
pendent on the radio technology used). It is difficult and unusual
for programmers to consider these factors jointly, so this is an ex-

9



Figure 10: Radio operations (y axis) versus receiver selectivity
of remote events (x axis), for a network of 7 nodes, broken down
by Unicast,Broadcast, Transmit (TX) and Receive (RX).

cellent target for automatic optimization.
Evita Raced allows us to express this optimization in a relatively

straightforward fashion. Consider the following rule template:
predRemote(@A,...):-

. predLocal 1(@B,...),...,predLocal n(@B,...),

. predLink(@B, A).

The results of the above rule are to be sent from source nodeB

to destination nodeA. For ease of exposition, we assume that the
destination nodeA is determined bypredLink, though generally it
could be determined in any of thepredLocal predicates.

The main idea of the rewrite is to gather selectivity information
on intended destinations and use it to generate either a unicast or a
broadcast version of the rule. The rewrite rule
destcountRemote(@B,a countdistinct<A>,...) :-

. predLocal 1(@B,...),...,predLocal n(@B,...),

. predLink(@B, A).

computes the number of distinct destinations for each unique
predRemote tuple. This count is fed into a cost function of the
general form
sendRemote(@B,...,U Cost, B Cost) :-

. destcountRemote(@B,Destinations,...),

. sys network(@B, NetSize, SendCost, RecvCost),

. U Cost := Destinations * (SendCost + RecvCost),

. B Cost := SendCost + NetSize * RecvCost).

If B Cost < U Cost, then the original rule is rewritten as a
broadcast rule, using a special broadcast address from the
wirelessBroadcast relation that is uniquely defined in a wireless
environment:
predRemote broadcast(@BROADCAST,a mkset<A>,...) :-

. predLocal 1(@B,...), ..., predLocal n(@B,...),

. predLink(@B, A),

. wirelessBroadcast(@B, BROADCAST).

The resulting tuple contains the set of all intended destinations (col-
lected by thea mkset aggregation function), and the attribute val-
ues of the original tuple. Another rule that receives a tuple of type
predRemote broadcast will check if it is an intended destination
(through a set membership check) and, if so, project the received
tuple ontopredRemote. On the other hand, ifB Cost≥ U Cost, then
we simply revert to the original unicast version of the rule.

We implemented this rewrite in 8 rules (63 lines) for wire-
less sensornets, using Evita Raced as the compiler front end and
DSN [6] as the back end and runtime. For testing, we fed as input
to the compiler a simple event detection program that periodically
sends alerts from one node to some fraction of the other nodes.
This fraction can vary due to event types and node interest. Fig-
ure 10 shows the results of running this program on our seven-node

sensornet testbed through 8200 events. Unicast is preferrable if the
selectivity is below 4 nodes whereas broadcast is preferrable if the
selectivity is at least 4 nodes. As selectivity increases and more
nodes are interested in each event, the cost of unicast increases
whereas the cost of broadcast remains constant. Selecting the best
protocol leads to as much as a3.5× reduction in total radio opera-
tions, which in the sensornet case, translates into a nearly identical
increase in energy savings and node lifetime.

While we have presented this broadcast vs. unicast rewrite as a
static compile-time optimization, we have also implemented three
additional compiler rules that enable a protocol to make the choice
dynamically during runtime. The key difference is that the dynamic
case includes the cost function and both the broadcast and unicast
versions of the original rule in the rewrite’s output.

4.4 Compilation Overhead
The metacompiler adds some overhead to the compilation pro-

cess that did not exist in P2’s original monolithic compiler. Even
so, the most complex of our OverLog programs compile on the or-
der of seconds with both the System R optimization and Magic-sets
rewrite installed. For instance, our version of the Chord overlay
written in OverLog [25] compiles in 31.607 seconds. As a com-
parison we took MIT’s C++ Chord code and ran it through g++,
which took 43.694 seconds. In the Declarative Networking setting,
compilation in less than a minute is usually more than adequate,
since networking programs typically define the ongoing behavior
of a continuously-running, long-lived dataflow.

However, in some cases we have been sensitive to startup over-
heads in our use of P2. For instance, some of our performance
experiments assume that the start times for all nodes will be identi-
cal. Given compilation times with a mean on the order of seconds,
the variance of compilation time across nodes can lead to an unac-
ceptable jitter in the start of the experiment. Compilation costs at
install time can be reduced by precompiling an OverLog program
into one of two possible intermediate representations. One avail-
able representation is rewritten OverLog, representing the original
program after being processed by some number of OverLog-to-
OverLog compilation stages. At installation time, Evita Raced can
be configured to avoid any stages that have already been run. An
alternative intermediate representation is the textual dataflow de-
scription generated by the Physical Planner. The load time of this
representation is almost immediate, and even outpaces the installa-
tion time in the original monolithic compiler.

5. RELATED WORK
The pioneering work on extensible query optimizer architectures

was done in the EXODUS [10] and Starburst [22, 27] systems,
which provided custom rule languages for specifying plan trans-
formations. The EXODUS optimizer generator used a forward-
chaining rule language to iteratively transform existing query plans
into new ones. Follow-on work (Volcano [14] and Cascades [12])
exposed more interfaces to make the search in this space of trans-
formations more efficient. Starburst had two rule-based optimiza-
tion stages. The SQL Query Rewrite stage provided a production
rule execution engine, for “rules” that were written imperatively in
C; it included a precedence ordering facility over those rules [27].
The cost-based optimizer in Starburst was more declarative, tak-
ing a grammar-based approach to specifying legal plans and sub-
plans [22]. These rule-based optimizers have been extremely influ-
ential in industry: the Microsoft SQL Server and Tandem optimiz-
ers are based on the Cascades design, and the optimizer in IBM’s
DB2 is based on the Starburst design.

The Starburst cost-based optimizer is the closest analog to Evita

10



Raced in the literature. In the paper, the authors explicitly draw
analogies between their approach and Datalog, but stop short and
distinguish between an optimizer – which in their view manipulates
query plans – and a datalog engine, which manipulates data [22].

Relative to the previous rule-based extensible optimizers, Evita
Raced innovates on a number of fronts. First, by treating query
plans as data, it can reuse the dataflow engine to implement the op-
timizer rule evaluation. This metacompilation approach provides
significanteconomy of mechanism, a well-established principle in
developing reliable software [28]. Second, Evita Raced allows all
aspects of the optimizer to be extended, including not only the plan
transformations and cost functions, but also the search strategies.
For example, we switched from a System-R-based, bottom-up op-
timizer to a Cascades-based, top-down optimizer in response to a
reviewer’s request with great ease in fewer than 24 hours (Sec-
tion 4.1.4); we are not aware of any other optimizer framework
where this kind of radical change would be so easy to achieve.
Third, the tabularization of code in Evita Raced enables code anal-
ysis via standard queries – for example, stratification tests or other
static program analyses useful for debugging. Finally, the use of
a logic-based language brings a measure of semantic rigor to the
extensibility language, as well as theoretical tests from the Data-
log literature that help in program understanding. This potentially
alleviates some traditional software engineering problems with un-
derstanding rule interactions in more ad-hoc rule languages.

Another interesting extensible query optimizer is Opt++ [17], an
elegant object-oriented design for an optimizer that is customizable
via inheritance and overloading. A specific goal of Opt++ was to
make the search strategy extensible, enabling not only top-down
vs. bottom-up state-space enumeration, but also randomized search
algorithms. Evita Raced embraces these additional dimensions of
extensibility introduced by Opt++, but provides them in a much
higher-level declarative programming framework.

6. DISCUSSION
When we began this project, we did not know whether a fully

declarative compiler was feasible or useful. We have been sur-
prised by just how positive our experience with Evita Raced has
been. It has allowed us to upgrade P2 from having essentially no
optimizations of note, to having quite a sophisticated suite of op-
timizations, rewrites, and program analyses. However, not every-
thing was smooth, and in this section we list some of the chief
lessons from our experience, which suggest research directions for
improving this line of work.

The most difficult problems we faced were due to discrepancies
between P2’s runtime behavior and Datalog semantics. In fact, the
current state of the system and language as described in Section 2.1
is already quite a bit crisper than what we had when we started this
work. Along the way, we often had to reason about operational
issues at the dataflow execution level, and find work-arounds that
ended up complicating our optimization code. Since then, the P2
group has moved the runtime onto a much cleaner semantic footing,
and today our optimization rules no longer require work-arounds
for the remaining implementation flaws mentioned at the end of
Section 2.1. This experience has strongly reinforced our belief
that truly declarative languages with clean semantics are superior
to more ad-hoc event-condition-action rule languages. Coding and
debugging is significantly eased by the ability to ignore runtime
considerations, and instead work from declarative semantics.

The second class of problems we faced came from our roots
in Datalog, and the challenge of scaling the cognitive burden of
Datalog-style programming into hundreds of rules developed by
multiple people. The downside of OverLog’s conciseness is that

even smallish batches of rules contain significant conceptual den-
sity. We found that understanding non-trivial amounts of Over-
Log – especially someone else’s OverLog – can be difficult simply
because the intent of the program gets complex quickly. This is
exacerbated by the notation of variable unification, which relies on
the programmer being able to visually match variable names across
terms in a rule. Additionally, the need to pay close attention to the
position of variables in comma-separated lists is vexing when table
arities get above 3 or 4. Finally, the lack of modularity or encap-
sulation in Datalog syntax does nothing to encourage good code
structuring and reuse, topics that matter a lot when the number of
rules climbs into the many dozens. These latter problems can be
addressed via syntactic reworkings and extensions of OverLog, an
interesting design problem we are actively considering.

A third class of problems arises from the semantics of Over-
Log’s extensions to Datalog, especially with respect to event tables.
While OverLog ostensibly promises Datalog-like semantics within
a (local) fixpoint computation, in order to truly understand the be-
havior of a long-running OverLog program, you have to understand
what happens across multiple fixpoints – i.e., across the handling
of multiple event tuples. That means thinking declaratively within
a fixpoint, but reasoning about ordering among events that are han-
dled across multiple fixpoints. It is not clear how to address this;
one possible direction is to bring concepts from temporal logic into
OverLog to reason about this more declaratively.

Finally, in talking to colleagues in industry, one constant we hear
is that – regardless of the underlying extensibility architecture – the
development and maintenance of query optimizers is a major chal-
lenge. For one thing, it is hard to debug code when the output’s
correctness (e.g., minimality of cost) is too expensive to verify in
general. Also, optimizers simply contain a lot of logic, includ-
ing statistics, search algorithms, and manipulation of complex data
structures with a lot of object sharing (e.g., of subplans). Our ex-
perience with Evita Raced is that declarative programming and re-
lational modeling can help mitigate these challenges quite a lot,
but there is no panacea – good design and taste are still required
to successfully separate concerns in the problem space (e.g., mea-
surement vs. modeling in statistics generation, logical vs. physical
query plan issues, etc.), and develop well modularized solutions.

7. CONCLUSION AND FUTURE WORK
The Evita Raced metacompilation framework allows OverLog

compilation tasks to be written in OverLog and executed in the P2
runtime engine. It provides significant extensibility via a relatively
clean declarative language. Many of the tasks of query optimiza-
tion – dynamic programming, dependency-graph construction and
analysis, statistics gathering – appear to be well served by a recur-
sive query language. The notion of metacompilation also leads to
a very tight implementation with significant reuse of code needed
for runtime processing.

Even with the caveats expressed in the previous section, we are
convinced that a declarative metacompiler is much easier to pro-
gram and extend than the monolithic query optimizers we have
worked on previously. We are now at a point where we can add
significant features (e.g., histograms, broadcast rewrites, stratifica-
tion tests) in an hour or two, where they would otherwise have taken
days or weeks of work in a traditional implementation.

One surprising lesson of our work was the breadth of utility af-
forded by the metacompilation framework. Although motivated by
performance optimizations, we have used Evita Raced for a number
of unforeseen tasks. These include: automatically expanding user
programs with instrumentation and monitoring logic; generating
pretty-printers of intermediate program forms; language wrappers

11



for secure networking functionality in the manner of SecLog [1];
stratification detectors and other static code analyses. None of these
are performance optimizations per se, but all fit well within an ex-
tensible, declarative program manipulation framework. As Over-
Log and P2 mature, we expect the use of the metacompilation ap-
proach to get even easier, and expect it will (recursively) help us
to implement better versions of the language and runtime. More
generally, we believe that metacompilation is a good design phi-
losophy not only for our work, but for the upcoming generation of
declarative engines being proposed in many fields.

Acknowledgments
Thanks to Goetz Graefe and Hamid Pirahesh for helpful insights
and perspective, and to Kuang Chen for editorial feedback.

8. REFERENCES
[1] M. Abadi and B. T. Loo. Towards a Declarative Language

and System for Secure Networking. InInternational
Workshop on Networking Meets Databases (NetDB), 2007.

[2] T. Anderson, L. Peterson, S. Shenker, and J. T. (Eds). Report
of nsf workshop on overcoming barriers to disruptive
innovation in networking. Technical Report 05-02, GENI
Design Document, Jan. 2005.

[3] M. P. Ashley-Rollman, M. De Rosa, S. S. Srinivasa, P. Pillai,
S. C. Goldstein, and J. D. Campbell. Declarative
Programming for Modular Robots. InWorkshop on
Self-Reconfigurable Robots/Systems and Applications, 2007.

[4] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. InSIGMOD, 2000.

[5] N. Belarmani, M. Dahlin, A. Nayate, and J. Zheng. Making
Replication Simple with Ursa. InSOSP Poster Session, 2007.

[6] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The Design and Implementation of
a Declarative Sensor Network System. InSenSys, 2007.

[7] T. Condie, J. M. Hellerstein, P. Maniatis, and S. R. T.
Roscoe. Finally, a use for componentized transport protocols.
In HotNets IV, 2005.

[8] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ Replication: A Hybrid Quorum Protocol for
Byzantine Fault Tolerance. InOSDI, 2006.

[9] J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp
ling: Weighted dynamic programming and the Dyna
language. InProc. Human Language Technology Conference
and Conference on Empirical Methods in Natural Language
Processing (HLT-EMNLP), 2005.

[10] D. D. G. Graefe. The EXODUS Optimizer Generator. In
SIGMOD, 1987.

[11] P. Grace, D. Hughes, B. Porter, G. Blair, G. Coulson, and
F. Taiani. Experiences with Open Overlays: A Middleware
Approach to Network Heterogeneity. InEuroSys, 2008.

[12] G. Graefe. The cascades framework for query optimization.
IEEE Data Eng. Bull., 18(3), 1995.

[13] G. Graefe. Iterators, schedulers, and distributed-memory
parallelism.Softw. Pract. Exper., 26(4), 1996.

[14] G. Graefe and W. J. McKenna. The Volcano Optimizer
Generator: Extensibility and Efficient Search. InICDE,
1993.

[15] J. M. Hellerstein. Toward network data independence.
SIGMOD Rec., 32(3), 2003.

[16] J. L. Hill and D. E. Culler. Mica: A wireless platform for
deeply embedded networks.IEEE Micro, 22(6):12–24, 2002.

[17] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans. In
SIGMOD, 1998.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router.ACM Trans. Comput.
Syst., 18(3), 2000.

[19] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine Fault Tolerance. InSOSP,
2007.

[20] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin,
D. Avots, M. Carbin, and C. Unkel. Context-Sensitive
Program Analysis as Database Queries. InPODS, 2005.

[21] N. Li and J. Mitchell. Datalog with Constraints: A
Foundation for Trust-management Languages. In
International Symposium on Practical Aspects of
Declarative Languages, 2003.

[22] G. Lohman. Grammar-like Functional Rules for
Representing Query Optimization Alternatives. InSIGMOD,
1988.

[23] B. T. Loo.The Design and Implementation of Declarative
Networks. PhD thesis, University of California, Berkeley,
2006.

[24] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking: Language, Execution and
Optimization. InSIGMOD, 2006.

[25] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing Declarative Overlays.
In SOSP, 2005.

[26] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. InSIGCOMM, 2005.

[27] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/Rule-Based Query Rewrite Optimization in
Starburst. InSIGMOD, 1992.

[28] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems.Proceedings of the IEEE,
63(9), Sept. 1975.

[29] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access Path Selection in a Relational Database
Management System. InSIGMOD, 1979.

[30] L. D. Shapiro, D. Maier, P. Benninghoff, K. Billings, Y. Fan,
K. Hatwal, Q. Wang, Y. Zhang, H. min Wu, and B. Vance.
Exploiting upper and lower bounds in top-down query
optimization. InInternational Database Engineering and
Application Symposium, pages 20–33, 2001.

[31] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. InVLDB, 2007.

[32] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe.
BFT Protocols Under Fire. InNSDI, 2008.

[33] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel.
Distributed monitoring and forensics in overlay networks. In
EuroSys, 2006.

[34] J. D. Ullman.Principles of Database and Knowledge-Base
Systems: Volume II: The New Technologies. W. H. Freeman
& Co., New York, NY, USA, 1990.

[35] W. White, A. Demers, C. Koch, J. Gehrke, and
R. Rajagopalan. Scaling games to epic proportions. In
SIGMOD, 2007.

12



materialize(sup,infinity,infinity,keys(2,3,4)).
materialize(adornment,infinity,infinity,keys(2,5,6)).
materialize(idbPredicate,infinity,infinity,keys(2,3)).

mg1 goalCount(@A, Pid, Name, a count<*>) :-
. idbPredicate(@A, Pid, Name),
. adornment(@A, Pid, Rid, Pos, Name, Sig).

mg2 magicPred(@A, Pid, Name, Sig) :-
. goalCount(@A, Pid, Name, Count),
. adornment(@A, Pid, , , Name, Sig).
. Count == 1.

mg3 sup(@A, Pid, Rid, Pos, Name, Schema) :-
. magicPred(@A, Pid, Name, Sig),
. rule(@A, Rid, Pid, , HeadPid, , , ),
. predicate(@A, HeadPid, Rid, , Name, , , Schema,
. . , , ),
. Schema := f project(Sig, Schema),
. Name := "magic " + Name, Pos := 0.

mg4 supNext(@A, Pid, Rid, Pos+1, Schema) :-
. sup(@A, Pid, Rid, Pos, Name, Schema).

mg5 sup(@A, Pid, Rid, Pos, Name, Schema) :-
. supNext(@A, Pid, Rid, Pos, PrevSupSchema),
. rule(@A, Rid, Pid, RuleName, , , , ),
. predicate(@A, , Rid, , , , , Schema, Pos, , ),
. Name := "sup " + RuleName + " " + f tostr(Pos),
. Schema := f merge(PrevSupSchema, PredSchema).

mg6 adornment(@A, Pid, Rid, Pos, Name, Sig) :-
. supNext(@A, Pid, Rid, Pos, PrevSupSchema),
. idbPredicate(@A, Pid, Name),
. rule(@A, Rid, Pid, , , , , ),
. predicate(@A, , Rid, , Name, , ,
. . Schema, Pos, , ),
. Sig := f adornment(PrevSupSchema, Schema).

Figure 11: Rule/Goal graph traversal rules.

APPENDIX

A. MAGIC-SETS RULE DESCRIPTION
Ullman’s textbook description of magic sets [34] can be viewed

as a traversal of a directed graph called theRule/Goalgraph. We
briefly review his description here as a refresher to help clarify the
declarative specification that follows. For a more thorough intro-
duction to the algorithm, we direct the reader to the textbook [34].
The vertices of the Rule/Goal graph are rules and goals, and the
edges represent data dependencies. Briefly put, a goal points to a
rule if it appears in the rule body, while a rule points to a goal if
that goal appears in the rule head. In the magic-sets algorithm, the
Rule/Goalgraph is rooted by the query predicate. The traversal of
the Rule/Goalgraph generates newmagicpredicates that contain
the set of variable bindings presented in a program’s derived pred-
icates. A magic predicate is generated for each “goal” vertex that
defines a unique “adornment”, where an adornment is a variable-
binding pattern that indicates which variables are free and which
are bound to a constant. Asupplementarypredicate is also cre-
ated for all encountered “rule” vertices during this graph traversal.
Supplementary predicates capture the way variable bindings can
be passed “sideways” from left-to-right through the terms of a rule
body.

To give a flavor of the OverLog implementation of magic-sets,
Figure 11 shows six rules that create the magic and supplementary
predicates through a traversal of theRule/Goalgraph (rules in the
graph correspond to therule predicate, and goals are given by the
predicate predicate). These six rules correspond to stepsi andii

of Algorithm 13.1 in Ullman’s textbook [34, Chapter 13].
Theadornment predicate contains the predicate name (Name) and

an adornment string (Sig), which is initially populated (by a single
rule, not shown) with the query predicate adornments. Rulemg1

counts the number of adornments for eachIDB predicate. If this
count is unique (Count == 1) in rulemg2, then amagicPred tuple is
created. Rulemg3 triggers on amagicPred tuple and, for each rule
whose head predicate is named by themagicPred tuple, it generates
a sup predicate with aSchema attribute containing the bound vari-
ables that exist at the given rule position. Rulemg4 detects a new
sup predicate (like the one generated for the rule head) and trig-
gers an event for the subsequentsup predicate position in the given
rule. The three way join in rulemg5 produces a tuple that contains
the schema of the previoussup predicate (PrevSupSchema) and the
schema of the predicate (Schema) in the subsequent rule position,
should one exist. Two more rules (not shown) move thesupNext

position forward if the given rule position does not identify a pred-
icate. The headsup predicate schema in rulemg5 contains all the
variables from the previoussup predicate and the schema of the
current predicate, since this schema represents the bound variables
that will exist in the subsequent rule position. Rulemg6 creates an
adornment out of the predicate in the given rule position, if that
predicate is part of theIDB. The f adornment function creates a
new signature from the bound variables in thePrevSupSchema at-
tribute, and the variables in the predicateSchema attribute. At the
end of the rule/goal graph traversal, those predicates that define
a unique adornment become magic predicates, and the rules that
mention these magic predicates are rewritten using the information
contained in thesup table.

13


	1 Introduction
	1.1 A Reflection on Declarative Languages

	2 P2: Language and Architecture
	2.1 OverLog, Revisited
	2.1.1 A Canonical Example

	2.2 The P2 Runtime Engine
	2.2.1 Dataflow Elements
	2.2.2 The P2 Event Loop


	3 Declarative Compilation
	3.1 Table-izing Optimizer State
	3.2 Metacompiler Architecture
	3.2.1 The Stage API
	3.2.2 Stage Scheduling

	3.3 Compiler Bootstrapping
	3.3.1 Parser
	3.3.2 Physical Planner
	3.3.3 Plan Installer

	3.4 Discussion

	4 Query Compilation Stages
	4.1 Query Optimization
	4.1.1 Plan Generation
	4.1.2 Best plan selection
	4.1.3 Improving Selectivity Estimation
	4.1.4 Top-down Optimization

	4.2 Magic-Sets Rewrite
	4.2.1 Magic Sets in the Network

	4.3 Wireless Protocol Optimization
	4.4 Compilation Overhead

	5 Related Work
	6 Discussion
	7 Conclusion and Future Work
	8 References
	A Magic-sets rule description



