Evita Raced: Metacompilation for Declarative Networks

*Tyson Condie, *David Chu, Joseph M. Hellerstein, and Petros Maniatis
UC Berkeley and Intel Research Berkeley

ABSTRACT nents underneath them: network fabrics and architectures are in

Declarative languages have recently been proposed for many new? period of swift evolution [2]. Hence the lessons of Data Inde-

applications outside of traditional data management. Since thesependence anc? decla]lc:atlvedat;pproache.s are very timely n this dok-
are relatively early research efforts, it is important that the architec- Main [15], and are reflected by recent interest in automatic networ

tures of these declarative systems be extensible, in order to accom-Ptimization ar_ld adaptation [11]. Moreover,_ we h_ave obsgrved that
modate unforeseen needs in these new domains. In this paper, wdnany networking tasks are naturally described in recursive query
apply the lessons of declarative systems tariernalsof a declar- anguages like Datalog, because (a) they typically _|nv0Ive recur-
ative engine. Specifically, we describe our design and implemen- sive graph traversals (e.g., shortgst-path .computatlon.s) [26], and
tation of Evita Racedan extensible compiler for the OverLog lan- (b) the asyr}c_hronous messaging mhergnt“ln networksuls n:eatly _ex—"
guage used in our declarative networking syste@, Evita Raced pressed as joins of message streams with “rendezvous” or “session

> .) . . tables [24, 25].
is ametacompiler an OverLog compiler written in OverLog. We - L .
describe the minimalist architecture of Evita Raced, including its Given these intuitions, we implemented the P2 and DSN sys-

extensibility interfaces and its reuse of P2's data model and runtime tgmsl, ang dergpnstlrated thg Ut'“tnyf;he defclaratlvi ?pprgachllvylth
engine. We demonstrate that a declarative language like OverLog is atalog-based implementations of a host of network functionalities

well-suited to expressing traditional and novel query optimizations &t var|0Lljs Ie\:)els of the prgtocol stack. Both of thelse SIYIftelmS allow
as well as other query manipulations, in a compact and natural fash-prrc]’_tohCO S to be (f,lxzressée ‘:;‘IS programs in al Data 0g-like language,
ion. Finally, we present initial results of Evita Raced extended with WNich aré compiled to dataflow runtime implementations reminis-

various optimization programs, running on both Internet overlay cegt Olf trat_jltlolnal databasfte query ?lans'dwe havedfound e u5|cri]g
networks and wireless sensor networks. a declarative language often results in drastic reductions in code

size (L00x and more) relative to procedural languages like C++.
Perhaps more surprising, our declarative protocols are often quite
1. INTRODUCTION intuitive: in many cases they are almost line-for-line translations
There has been renewed interest in recent years in applying declaef published pseudocode, suggesting that Datalog is indeed a good
ative programming to a variety of applications outside the tradi- match for the application domain [6, 25].
tional boundaries of data management. Examples include work on
compilers [20], computer games [35], natural language process-1.1 A Reflection on Declarative Languages

ing [9], security protocols [21], information extraction [31] and peclarative Networking and related topics have the potential to
modular robotics [3]. Our own work in this area has focused on expand the impact of database research into new domains, while
Declarative Networkingas instantiated in th®2 system for In- reviving interest in classical database topics like recursive query

ternet overlays [24, 25], and tHaSN system for wireless sensor processing that had received minimal attention in recent years. Yet
networks [6]; this work has been extended by various colleagues asg; own systems are implemented in imperative programming lan-
well [1,5,32,33]. guages: the P2 declarative overlay system is implemented in C++,
There is a strong analogy between the Internet today, and databasgng the DSN declarative sensor network system is implemented
systems in the 1960’s. Network protocol implementations involve i, an embedded dialect of C. We recently began asking ourselves
complex procedural code, and there is increasing need to separatyhether Codd’s vision applies to our own efforts: can declarative
their specification from physical and logical changes to compo- programming improve the implementation of declarative systems?

“Tyson Condie and David Chu are supported in part by the National _ ' this paper, we put declarative systems “in the mirror,” inves-

Science Foundation under Grants 11S-0713661 and CNS-0722077,tigating a declarative implementation of a key aspect of a declara-

and by a gift from Microsoft Corporation. tive system. Specifically, we have reimplemented the query plan-
ning component of P2 as metacompiler a compiler for the P2
language, OverLog, that is itself written in OverLog. We call the

Permission to copy without fee all or part of this material isnged provided resulting implementation “Evita Racdli"We use Evita Raced pri-
that the copies are not made or distributed for direct commieadieantage, marily for query optimization, extending P2 with a number of im-
the VLDB copyright notice and the title of the publicatiordiits date appear, portant query optimization techniques it formerly lacked. Our ex-
and notice is given that copying is by permission of the VerygkeData perience has been quite positive: we were able to relatively easily

Base Endowment. To copy otherwise, or to republish, to postervers
or to redistribute to lists, requires a fee and/or speciamnigsion from the
publisher, ACM. PR - o .
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand “Evita Raced” is almost “Declarative” in the mirror, but as wthe Over-

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/GD/0 Log language itself, it makes some compromises on complete eveler

take P2 from having almost no optimizations at all, to having a

materialize(link,infinity,infinity,keys(1,2)).
materialize(path,1,infinity,keys(1,2,3)).
materialize(shortestPath,1,infinity,keys(1,2,3)).

fairly sophisticated (and growing) set of optimizations. For exam-
ple, we implemented the traditional System R dynamic program-
ming optimizer (including choice of access and join methods, “in-

teresting orders,” and histograms) in only 51 OverLog rules (292
lines of code); our implementation of the Supplementary Magic
Sets rewriting optimization for recursive queries [34] is not only

compact (68 rules, 264 lines), but also a close translation of the
description from Ullman'’s textbook on the subject [34].

The elegance of our approach comes in part from the fact that
query optimization techniques—Iike many search algorithms—are
at heart recursive algorithms, and benefit from a declarative+ecu
sive language in much the same way as routing protocols. Even
non-recursive optimization logic—such as parts of Ullman’s magic-
sets pseudocode—is simple enough to express in a declarative fash
ion that abstracts away mechanistic details such as the scheduling
of data-parallel steps (e.g., scanning all rules in a program in paral-
lel versus sequentially).

Our contributions here are three-fold. First, we present a declar-
ative architecture for query optimization that is based on metacom-
pilation, reusing the query executor in a stylized fashion to serve
as the engine beneath the optimization process. This results in al
economy of mechanisj28] not afforded by earlier extensible opti-
mizers. Second, we show that a variety of traditional and novel
query optimizations are easy to express in a recursive, declara-runtime semantics a fair bit in an attempt to merge practical matters
tive language. Finally, we validate the simplicity and applicability from networking with declarative semantics. Much of this work is
of our design via an implementation of an OverLog query opti- documented in Loo’s dissertation [23], the remainder is reflected in
mizer for the P2 Declarative Networking engine, which also cross- the public P2 code release. In this section we overview the current

link (@"1ocalhost:10000", "localhost:10001").
link (@"1ocalhost:10001", "localhost:10002").

r1 path(ex,Y,p,c) :- link (ex,Y,C), P := fcons(X,Y).

r2 path(ex,Y,p,c) :-
link (ex,z,c1), path(ez,y,p2,c2),
f-contains(X,P2) == false,

P := f.cons(X,P2), C := C1 + C2.

r4 minCostPath(ex,Y,amin<C>)
path(ex,Y,P,C).

"r5 shortestPath(ex,Y,p,c) :-
minCostPath(ex,y,c), path(ex,Y,p,c).

Query: shortestPath(eLOCALHOST, "1ocalhost: 10000",P,C) .
Figure 1: Shortest path program in OverLog. a_ prefixes in-

troduce aggregate functions and _ prefixes introduce built-in
functions.

compiles to DSN programs that run on wireless sensor networks.

Based on our experience to date, we believe that declarative meta-

compilation is a clean, architecturally parsimonious way to build
the next generation of extensible query optimizers for a wide vari-
ety of emerging application domains, where the relevant optimiza-
tions remain unclear.

2. P2: LANGUAGE AND ARCHITECTURE

We begin our discussion with an overview of key aspects of the
P2 declarative network system. While ostensibly a network proto-
col engine, architecturally P2 resembles a fairly traditional shared-

semantics of OverLog that are relevant to our discussion here.
OverlLog is based on the traditional recursive query language,
Datalog; we assume a passing familiarity with Datalog in our dis-
cussion. As in Datalog, an OverLggogramconsists of a collec-
tion of deductionulesthat define the set of all derived tuples from a
base set of tuples calléacts(see FigurE]l for an example OverLog
program used in what follows). Each rule hasaalyon the right of
the : - divider, and @headon the left; the head represents tuples that
can be derived from the body. The body is a comma-separated list
of terms a term is either gredicate(i.e., a relation), aondition
(i.e., a relational selection) or @ssignmefit OverlLog introduces
some notable extensions to Datalog that we describe next, to illus-

nothing parallel query processor, targeted at both stored state and,te in more detail the particular language for which we are writing

data streams. P2 supports a recursive query language called Over

Log that resembles traditional Datalog with some extensions we

discuss below. Each P2 node runs the same runtime engine, and, by;

default, participates equally in every declarative program. In paral-
lel programming terms, P2 supports the Single-Program-Multiple-
Data (SPMD) model of parallel computation.

The P2 engine at each node consists of a compile
programs and physically plans them—a dataflow runtime engine,
and access methods. The original P2 compiler was monolithic and
implemented in an imperative language (C++). The subject of this
work is the replacement of that monolithic compiler with a runtime-
extensible compiler framework that admits declaratively-specified
optimizations, as well as compilation stages that perform functions
other than performance optimization. In this section, we highlight
the distinguishing features of the OverLog language, as well as the
P2 dataflow executor and access methods.

2.1 OverLog, Revisited

Our original paper on P2 presented OverLog in an ad-hoc man-

a metacompiler.

Horizontal partitioning —As in the Network Datalog descrip-
ion mentioned above [24], OverLog’s basic data model consists
of relational tables that are partitioned across the nodes in a P2
network. Each relation in an OverLog rule must have one attribute
that is preceded by an “@” sign. This attribute is calledittoaition

r—which parsesgie cifierof the relation, and must contain values in the network's

underlying address space (e.g., IP addresses for Internet setting
802.13.4 addresses for sensor networks, hash-identifiers ffer co
written atop distributed hash tables, etc.). Location specifiers de-
scribe the horizontal partitioning of the relation: each tuple is stored
at the address found in its location specifier attribute. At a given
node, we call a tuple bcal tupleif its location specifier is equal

to the local address. Network communication is implicit in Over-
Log: tuples must be stored at the address in their location specifier,
and hence the runtime engine has to send some of its derived tuples
across the network to achieve this physical constraint. Syntactic
tests and transformations (“localization”) ensure that a set of rules
can be maintained in a manner consistent with its location specifiers

ner as an event-driven language [25]. In a subsequent paper, We, g network topology [24], in environments that lack all-to-all net-

provided a syntax and declarative semantics for a subset of Over-
Log calledNetwork Dataloghat supported distributed Datalog pro-
grams with aggregation that could be laid out on network links [24].

work connectivity. We reimplemented localization declaratively in

2OverLog’s assignments are strictly syntactic replacemeingsriongs with

Since that time, we have modified the OverLog language and the P2expressions; they are akin to “#define” macros in C++.

Evita Raced, via 28 OverLog rules (104 lines). £_cons (X,Y)—the concatenation of andy.” Note that rulert has

Soft State, Events, and Fixpoints—Associated with each Over- the same location specifiers throughout, and consequently involves
Log table is a “soft-state” lifetime that determines how long (in sec- no communication. This is not true of the recursive rdewhich
onds) a tuple in that table remains stored before it is automatically connects anyink tuple at a node& with any path tuple at a neigh-
deleted. Lifetimes can vary from zero to infinity. Zero-lifetime ta- boring nodez, the output of which is to be stored backxatSuch
bles are referred to a&ventables, and their tuples are calledents rules can be easily rewritten (localized) so that the body predicates
all other tables are referred to amterializedables. OverLog con- all have the same location specifier [24, 26]; the only communica-
tains amaterialize declaration that specifies the lifetime of a ma- tion then is shipping the results of the deduction to the head rela-
terialized table. In OverLog, events are defined to occur one-at-a- tion's location specifier.
time betweerfixpoint computations at a given node. Hence each . .
fixpoint computation on the OverLog rules operates with a tradi- 2.2 The P2 Runtime Engine
tional, static set of stored tuples: (a) the local tuples in materialized The P2 runtime is a dataflow engine that was based on ideas from
tables whose lifetime has not run out, (b) at most one local event relational databases and network routers; its scheduling and data
fact acrossll event tables (theurrentevent being processed), and hand-off closely resemble the Click extensible router [18]. Like
(c) any derived local tuples that can be deduced from (a) and (b) via Click, the P2 runtime supports datafl@lementgor “operators”)
the program rules. This captures the semantics of OverLog on eachof two sorts: pull-based elements akin to database iterators [13],
network node individually. As of the time of writing, P2 only pro- and push-based elements as well. As in Click, whenever a pull-
vides semantic guarantees across nodes in the network for monopased element and a push-based element need to be connected, an
tonic OverLog programs (without negation or aggregation) [24], explicit “glue” element (either a pull-to-push driver, or a queue el-
and for “local-only” programs that never repartition data. Exten- ement) serves to bridge the two. More details of this dataflow co-
sions on this front are an open area of research, but not directly rel- ordination are presented in the original P2 paper [25].
evant to Evita Raced, which currently consists of local-only rules.

Stratification—Like many Datalog systems, P2 only supports 2.2.1 Dataflow Elements
programs whose use of negation and aggregation is stratified [34], The set of elements provided in P2 includes a suite of operators
that is, there is no aggregation or negation on a recursive cycle of tamijiar from relational query engines: selection, projection, and
head/body rule dependencies. Checking this property is very easyjn_memory indexes. P2 supports joins of two relations in a manner
in Evita Raced; it is a transitive closure program on the rule graph, gimilar to the symmetric hash join; it takes an arriving tuple from
which we implemented in 5 OverLog rules (27 lines). one relation, inserts it into an in-memory table for that relation,

Deletions and Updates-Like SQL, OverLog supports set- anq probes for matches in an access method over the other relation
orlent_ed expressions that |dent|fy tuples to be deleted or “pdated-(either an index or a scan). To this suite, we added sorting and
To this end, any OverLog rule in a program can be prefaced by merge-joins, which allow us to explore some traditional query op-
the keyworddelete. The delete rule body specifies facts to be (imization opportunities and trade offs as discussed in SeEfion 4.1.
deleted. In addition to deletes, OverLogsterialize statement Given its focus on network protocols and soft state, P2 currently
supports the specification of a primary key for each relation, and a5 no support for persistent storage other than the ability to read in-
these relations can appear in the heads of rules. Any derived tu-p, ¢ streams from comma-separated-value files. Its tables are stored
ple for that relation that matches an existing tuple on the primary j, memory-based balanced trees that are instantiated at program
key is intended teeplacethat existing tuple. For semantic simplic- giariyp; additional such trees are constructed by the planner as sec-
ity, OverLog deletions are defined to occur only after the fixpoint ondary indexes to support query predicates.
computation of the program that generates them. P2 also provides a number of elements used for networking,

Status—In the interest of full disclosure, we note that the cur- \yhich handle issues like packet fragmentation and assembly, con-
rent P2 release has a design flaw in the deferral of processing Celgestion control, multiplexing and demultiplexing, and so on; these
tain tuples, which compromises its ability to achieve two aspects of ;o composable in ways that are of interest to network protocol
the described semantics. Specifically, it may (a) process multiple gesigners [7]. The P2 planner currently assembles these network
strata on one node at the same time, and (b) remevexe tuples elements in a fixed manner so that each P2 node has a single IP
from materialized tables before the end of the fixpoint that gener- port for communication, and the dataflow graph is “wrapped” in el-
ates them. This flaw does not directly affect the work described in ements that handle network ingress with translation of packets into
this paper. The fix for this problem has been designed, but was notypjes and network egress with translation of tuples into packets.
implemented at the time of publication.

2.2.2 The P2 Event Loop

2'1'].' A Canonical .Example) n The control flow in the P2 runtime is driven by a fairly traditional
To illustrate the specifics of OverLog, we briefly revisit a gyentjoop that responds to any network or timer event by invoking

shortest-paths example (Figue 1). The thiegerialize State- an appropriate dataflow segment to handle the event.

ments specify thatink, path andshortestPath are all tables with The basic control loop in P2 works as follows:

infinite lifetime and infinite storage sp&keror each table, the po- 1. An event is taken from the system input queue, correspond-
sitions of the primary lﬁ‘?y attributes are noted as well. Rule ing to a single newly arrived tuple to be inserted in a table.
can be read as saying “if there is a link tuple of the fomy,) We will refer to this tuple as theurrent eventuple.

stored at any nodg, then one can derive the existence of a path 5 The value of the system clock is noted in a variable we will
tuple (x,Y,P,c) at nodex, wherep is the output of the function call thecurrent time Soft-state tuples whose lifetime is over

3) .) .) as of the current time are skipped (and removed from internal
The third argument of materialize optionally specifies a aast on the

number of tuples guaranteed to be allowed in the relation. Fheuntime storage) during subseql,!ent pr_oceSSIng. .

replaces tuples in “full” tables according to a FIFO ordenasded during 3. The current event tuple is, logically, appended to its table.

execution; replaced tuples are handled in the same way asstdjgplaced 4. The dataflow corresponding to the OverLog program is initi-
due to primary-key overwrite. ated and runs to a local fixpoint following traditional Datalog

@ @ @ Table 1: The Metacompiler Catalog: tables defining an Over-

> () Log program and dataflow execution plan.

@ Name Description | Relevant attributes]

table Table definitions table_id, primary_key
@ @ index Index definitions index_id, table_id, keys, type
@ @ fact Fact definitions program _id, table_id, id, tuple
program | User program program_id, name, stage, text
description depends, plan
@ @ @ @ rule Rules appearing program_id, rule_id, name,
(Name in a program term.count, headd
@ predicate| Predicates appearing | id, rule_id, tableid, name,
Method inarule position, accesmethod
select Selections id, rule_id, boolean, position
(Position > @ o @ (Position) appearing in a rule
@ assign Assignment statements id, rule_id, variable,
appearing in a rule value, position

@ @ - the diagram directly from the semantic analysis rules enforced in
the original P2 compiler; we discuss a few of them here for il-
¢ @ @ @ lustration. An OverLogule must appear in exactly orgrogram
A selectterm (e.g.,f_contains (X,P2) == false in Figure[l) is a
Boolean expression over attributes in the predicates of the rule, and
must appear in exactly omale. The diagram indicates thataed-
icate must also appear in a uniquele, and that it may possibly
reference a singl@ble A predicate that references a table is called
semantics, with the following exception: during processing, 2atable predicatefor amaterialized predicafe while one that does
any non-local derived tuples are buffered irsend queue not is called arevent preFjlcateAn indexis Qeflned over exactly.
local deletions are postponed until the end of the fixpoint. ~ Onetable, and atable defines at least one index (namely the pri-
5. Upon fixpoint completion, the contents of the send queue are Mary key index, which P2 always constructs). Some relations may
transmitted over the network, and at that point any buffered contain a number diactsat startup, each of which must belong to
local tuple deletions are performed. a single program and must reference a single table.
As noted above, our current prototype lacks deferred deletions. The conversion of the ER diagram to relational format is straight-
forward. TablelL lists the relations that capture the entities in the
ER diagram; we refer to this as thdetacompiler Catalog We
3. DECLARATIVE COMPILATION modified P2 to create these tables at system startup, and they are
Evita Raced is a compiler (i.e., query optimizer and rewriter) for accessible to any optimization programs that get added to the sys-
OverLog that supports a runtime-extensible set of program rewrites tem. The primary key columns are bold in Figlile 2 and Thble 1.
and optimizations, which can themselves be expressed in Over- . .
Log. A key contribution of this work is the economy of mech- 3.2 Metacompiler Architecture
anism that we achieve via the use of P2's dataflow runtime sys- Optimization logic expressed in OverLog is declarative, and
tem to implement the compiler. Two main challenges must be ad- Evita Raced realizes this logic by converting it to a dataflow pro-
dressed to make this work. First, all compiler state—the internal gram to be executed by the P2 dataflow subsystem. In this section
representation of declarative OverLog programs—needs to be cap-we describe how Evita Raced represents query optimization pro-
tured in a relational representation so that it can be referenced andgrams as dataflow, and also the way it orchestrates multiple differ-
manipulated from OverLog. Second, the (extensible) set of tasks ent optimization programs through the P2 dataflow framework.
involved in optimization must itself be coordinated via a single An optimizer built using Evita Raced is composed of an exten-
dataflow program that can be executed by the P2 runtime engine.sible number ostages each of which performs some compilation
Both challenges must be addressed without hindering the function task on the input program. One way to write an Evita Raced stage
of those rewrites and optimizations that are implemented in more js to construct a monolithic program in C++, and encapsulate it
traditional, imperative code (e.g., in C++). in a single dataflow element; this is how we implement certain
In this section we describe the implementation of the Evita base stages required for bootstrapping, as described in SECion 3.3.
Raced framework, including the schema of the compiler state, the However, the power of Evita Raced comes from its support for
basic structure of the Evita Raced dataflow graph, and the basicstages written in OverLog, which, in addition to being compactly

Figure 2: ER Diagram of a query plan in P2.

dataflow fragments needed to bootstrap the optimizer. expressed in a high-level language, can be loaded into a running
.. . P2 installation at any time. A stage programmer registers a new
3.1 Table-lzmg Optlm|zer State stage with Evita Raced by inserting a tuple into gregramrela-

A typical query optimizer maintains a number of data structures tion. This tuple contains a unique identifier-ogram_id), a name
to describe the contents of a query, and to represent ongoing prop-(name), a list of stage dependencie&pends) , and the program
erties of a query planner including fragments of query plans. Our text (text). Because therogram relation is used to convey par-
first task in designing Evita Raced was to capture this information tial compilation results from stage to stage as wglhgram tuples
in a relational schema. also contain attributes for the name of the compiler stage operating
Figure2 shows an Entity-Relationship diagram that captures the on the programstage), and the stage’s final physical plam¢n),
properties of an OverLog program. We derived the constraints in though these attributes are empty when the programmer first cre-

ates the tuple. Sectidn_3.P.2 describesdhgends attribute, and <Stage>::pmgramEvemW
its use in the installation of new compiler stages. phe. attribute program
pertains to the physical planner stage, which is described in Sec-
1 H 4 parse::
tion[33:2. Theprogramtable is also used to store users’ OverLog woate PO e
programs (not compiler stages); for these programsthends stream olanner: ——
attribute must be empty. We next describe the interfaces to an Evita |~ programEvent
Raced compiler stage, after which we discuss the way that multiple program install::

: — : Install
such stages are coordinated. programkvent

insertion s

3.2.1 The Stage API

At base, an Evita Raced stage can be thought of as a streamFigure 3: The cyclic dataflow of Evita Raced, showing only the
query that listens for a tuple to arrive on an event stream called default compilation stages.
<stage>: :programEvent, Where<stage> is the name of the stage.
The<stage>: :programEvent table contains all the attributes men-
tioned in theprogram table. When such a tuple arrives, the stage
runs its dataflow over that event and the tables in the Metacompiler programs, including compiler stages and user programs. It con-
Catalog, typically modifying catalog tables in some way, until it sists of a C++ “demultiplexer” that routes tuples from its input (on
inserts a newrogran tuple, containing the name of the stage in the the left) to individual event handlers listening for particular tuple
stage attribute, into the program table. This insertion indicates the names. Arrows leaving the Demux element in the figure contain
completion of the stage. the name of the tuple for which the four components to the right
To represent this behavior in a OverLog stage, a relatively simple listen.
template can be followed. An OverLog stage must have atleastone Consider the simplicity of this approach as compared to the ex-
rule body containing th@stage>: :programEvent predicate. This plicit stage-wiring sketched above. When a new compilation stage
represents the ability of the stage to react to new programs arriving is installed at runtime, the Installer (Sectlon 313.3) simply connects
at the system. In addition, the stage must have at least one ruleit to the Demuxelement, listening fokstage>: : programEvent tu-

with aprogram head predicate, which derives a ngysgran tuple ples, before updating the corresponding tuple in ghegram ta-
when signaling stage completion. OverLog stages may be recursiveble. When the StageScheduler receives the updaiegkam tu-
programs, so they run to fixpoint before completing. ple, it uses the value of itdepends attribute to insert appropri-
atestageLattice tuples into the corresponding table of the system
3.2.2 Stage Scheduling catalog. Subsequeptogram tuples will be redirected to the newly
In many cases, optimization stages need to be ordered in a par-Installed compiler stage (astage>: : programEvent tuples) by the
ticular way for compilation to succeed. For exampl@asserstage ~ StageScheduler as the updatedgeLattice dictates. Together,

must run before any other stages, in order to populate the Metacom-the StageScheduler and the Demux work much likedatyopera-

piler Catalogs, and ammstaller stage must follow all other stages, ~ tor [4]: they achieve flexible dataflow operator ordering via encap-
since by installing the dataflow program into the P2 runtime it ter- Sulated routing decisions, rather than dataflow edges. In an eddy,
minates a compilation session. We will see other specific prece- this flexibility enables dynamic runtime reordering. In Evita Raced,
dence constraints in Sectibh 4. it simplifies the installation of new compiler stages at runtime.

A natural way to achieve such an ordering would be to “wire 10 Sum up, the life of a program compilation starts when a
up” stages explicitly so that predecessor stages directly produceUSer submits @rogran tuple to the system with aul1 stage at-
<stage>: :progranEvent tuples for their successors, in an explicit ~ tribute. The StageScheduler receives thafgram tuple and gen-
chain of stages. However, it is awkward to modify such an explicit €rates gparse: :progrankvent tuple (the Parser being the source
dataflow configuration upon registration of new stages or prece- Stage in the lattice), which is routed by the Demux element to the
dence constraints. Instead, Evita Raced captures precedence cor2arser stage. When the Parser is done, it updatesptatan
straints aslatawithin a materialized relation callestageLattice, tuple in the corresponding table, changing the tuple’s attribute to
which represents an arbitrary partial order (i.e., an acyclic binary ‘Parser.” The StageScheduler receivesghegram tuple, and uses
relation) among stages; this partial order is intended to be a lattice, theéStageLattice table to decide how to proceed; in the case of the
with the Parseras the source, and the dataflvstalleras the sink ~ default stages in Figuld 3, it routespaianner : : progranEvent to

(we review built-in stages in Sectifn B.3). the Demux and eventually the Physical Planner, which goes around
To achieve the dataflow connections among stages, the built-in the loop again to the Installer. Finally, once the Installer is done
StageScheduleglement listens for updates to theogran table, and notifies the StageScheduler vigragran tuple with thestage

indicating the arrival of a new OverLog program or the completion attribute set to “Installer,” the StageScheduler concludes the com-
of a stage for an on-going program compilation, as described in Pilation process. If the OverLog program being parsed is itself a
the previous section. ThBtageSchedulés responsible for shep- ~ new compilation stage (indicated by a non-rdgpendsttribute in
herding stage execution according to egeLattice. Given a theprogram tuple), then after installation, the scheduler updates the
program update, it joins it with the lattice to identify next stages StagelLattice.

that can be invoked, and generatess@age>: : programEvent tu- . .

ple that will start that stage; the contents of these tuples are the3-3 Compiler Bootstrapping

same as those of the updatgtbgran tuple. If the join with the The previous architectural discussion neatly sidestepped a nat-
StageLattice produces more than one tuple, then 8tageSched- ural question: how is an Evita Raced compiler containing many
uler arbitrarily chooses one of the next stages to run. OverLog stages bootstrapped, so that it can compile its own Over-

The StageScheduler and all compilation stages (built-in or Log specification? As in many metaprogramming settings, this
runtime-installed) are interconnected via the simple dataflow illus- is done by writing a small bootstrap in a lower-level language.
trated in Figurd 3. P2 uses this dataflow to schedule all OverLog Evita Raced is initialized by a small C++ library that constructs

the cyclic dataflow of FigurEl3, including the three default stages 3.4 Discussion

shown, which are themselves written in C++. Together, thiscode is The declarative metacompilation concept in Evita Raced nat-
sufficient to compile simplified OverLog (local rules only, no opti- yrally caused us to design an extensibility architecture based on
mizations) into operational P2 dataflows. We next describe each of gata modeling and dataflow, rather than library loading and con-
these stages in a bit more detail, since they form the foundation of to| flow (function calls). While rule-based approaches have

the Evita Raced runtime. been implemented before to make optimizers more easily extensi-
331 P ble [10, 12, 14,22, 27], the internal implementation of Evita Raced
- arser is unique in its economy of mechanism. We aggressively reuse

The Parser passes the program text it receives in the the native dataflow infrastructure, which both executes optimiza-
programEvent through a traditional lexer/parser library specified tion code, and orchestrates stages via precedence tables and the
using flex and bison; this library code returns a standdostract StageScheduler cycle. One benefit of this design is that the Evita
syntax tregepresentation of the text. Assuming the Parser does not Raced infrastructure itself adds very little code (and code main-
raise an exception due to a syntax error, it walks the abstract syn-tenance overhead) to the P2 engine: beyond the StageScheduler
tax tree, generating Metacompiler Catalog tuples for each of the and the three bootstrap stages, no additional extensibility code was
semantic elements of the tree. In addition to recognizing the dif- added to P2 to support Evita Raced. A second benefit is that even a
ferent terms of each rule, the parser also annotates each term withmajor addition to the Evita Raced compiler entails minimal modi-
its position in the given program. By convention, the first term of fication to the runtime state: only the addition of a pair of dataflow
a rule body is the event predicate of the rule, if one exists. By the edges to connect up the new stage, and the insertion of precedence
same convention, the term in the last position for a rule is the head tuples in a single table. We return to these points in Sefiion 6.

predicate.
4. QUERY COMPILATION STAGES

3.3.2 Phy3|cal Planner)) Having described the Evita Raced infrastructure, we now turn
The Physical Planner stage is responsible for doing\zerteans- our attention to the issue of specifying query optimizations in Over-
lation of Metacompiler Catalog tuples (i.e., a parsed OverLog pro- | og. |n this section we describe three of the compiler stages
gram) into a dataflow program. It essentially takes each rule and e have developed for Evita Raced. Secfiod 4.1 discusses a dy-
determinis_ti_cally translate_s it into a dataflow graph language, basedngmic programming optimizer stage akin to that of System R [29]
on the positions of terms in the rule.) along with a modification to use a top-down search strategy akin
More specifically, for each rule the Planner considers each term g that of Cascades [30]. SectibmM.2 describes a stage that per-
(predicate, selection or assignment) in order of position attribute. forms the magic-sets rewrite on recursive OverLog programs [34].
The predicate representing the event stream is always planned firstgection[ZB describes a protocol optimization specific to a wire-
and registers a listener in the Demux element (recall Figure 3). The |ess environment and reports on its benefit in a real sensor network
terms following the event stream are translated, left-to-right, into a setting. We conclude with a brief discussion of the compilation

sequence of joins in the same way that the original P2 system did, gyerhead added by the metacompiler in Sedfich 4.4
so we do not address them further here.

We do mention three specific details. First, whereas the origi- 4.1 Query Optimization
nal P2 system translated a logical query plan directly to a software The System R optimizer paper by Selinger, et al. is the canoni-
dataflow structure in C++, we chose to create an intermediate, tex- cal textbook framework for database query optimization [29]. The
tual representation of the dataflow, akin to Click’s dataflow lan- paper first laid out the notion that query optimization can be de-
guage, which can be examined and manipulated by programmerscomposed into two basic parts: query plan cost estimation and plan

interested in modifying compiler output. _ enumeration. While this algorithm is traditionally implemented in-
Second, unlike the original P2 system, we have introduced a side the heart of a database system via a traditional procedural pro-
number of access methods for in-memory tables. f3enicate gramming language, both of these tasks are naturally specified in a

relation contains the access method as one of the attributes, and wejeclarative query language. To perform cost estimation, System R
have modified the P2 physical planner to choose the appropriaterequires data statistics like relation cardinalities and index selectiv-

dataflow element that implements the given access method. ities; OverLog is a fitting language to collect these statistics, es-
Third, as mentioned before, OverlLog rules may consist only of pecially in a distributed fashion over all relation partitions. In this
materialized predicates (e.gtablel :- table2, table3.”). An section we describe a fairly faithful implementation of the Selinger
additional compiler stage written in OverLog converts such rules paper written in OverLog. In Sectidn4.1.3 we extend this descrip-
to (multiple) event rules via the semi-iva evaluatiordelta rewrite tion with better selectivity estimation techniques using histograms.
of Loo et al. [24], e.g., tablel :- delta table2, table3.” Finally, SectiofZ.1]4 presents a description of an optimizer stage

and “tablel :- table2, delta_table3.”. delta_table denotes that employes a top-down search strategy.

a stream conveying insertions, deletions, or timeout refreshes to tu- We focus first on the basic dynamic programming (DP) algo-
ples of the tableable. The delta rewrite compiler stage is written rithm for the state-space enumeration at the heart of the System
in OverLog using rules (54 lines) and it is the first stage installed R optimizer, including the standard features for handling multiple

following compiler bootstrap. access and join methods, and the “interesting orders” in subplans
(which could be naturally generalized to other physical properties).
3.3.3 Plan Installer This algorithm enumerates query plans for increasingly-large sub-

Given the output of the Physical Planner in the dataflow speci- goals of the query optimizer. The task of the algorithm is to fill in a
fication language, what remains is to parse that text, and constructDP table with the lowest-estimated-cost query plan among all plans
the corresponding dataflow graph of C++ elements. We have imple- producing arequivalenbutput relation (i.e., plans composed of the
mented this “physical plan compiler” in C++, and housed it within same query terms and physical properties). In the System R opti-
the Installer stage. Once these elements and their connections arenizer, theprinciple of optimalityis assumed to hold: the lowest-
instantiated, the Installer stage connects them to the Demux. cost solution to some plan will be built from the optimal solutions

pg2 pIan(@A, Pid, Rid, f-idgen(), PlanID, "Predicate", PredID,
Plan, Schema, Card, Cost,
OuterPos+1, AM, null, Sort) :-
bestPlanUpdatgea, pid, Rid, PlanID),
pIan(@A, Pid, Rid, PlanID, _, _, _, OuterPlan,
OuterSchema, OuterCard, OuterCost, OuterPos,

-),

rule (ea, Rid, Pid, -, -, -, -, TermC, .),

predicate(ea, PredID, Rid, -, -, Tid, -,
PredSchema, PredPos, _, .),

PredPos < TermC,

tablecea, Tid, -, -, -, -, TCard, .),

f-contains(PredID, OuterPlan) == false,

Card := OuterCard * TCard / 10,

Cost := OuterCost + (OuterCard * TCard),

AM := f_cons("SCAN", null),

Plan := f._cons(PredID, OuterPlan),

Schema := f_merge(OuterSchema, PredSchema),

Sort := null.
pgn planUpdate(ea, Pid, Rid, PlanID, SubPlanID, Sort) :-
plan(eA, pid, Rid, PlanID, SubPlanID, _, -,
s —» —» —» - -, Sort).

Figure 4: Scan (nested loop) join method.

to subplans. Thus dynamic programming can proceed in “bottom-
up” fashion. The process is driven by having each rule contain an
event predicate that listens for the generation of new subplahs of
terms. For a given rule, the optimizer generates plans offsize

pg3 plancea, ...) :-

table(ea, Tid, Tablename, -, _, -, TCard, Sort),
index(eA,Iid,Tablename,Key,Type,Selectivity),
f-contains(PredID, OuterPlan) == false,
f-indezMatch(OuterSchema, PredSchema, Key),
Card OuterCard * (Selectivity * TCard),
Cost OuterCost + Card,

AM := f_cons(Type, Iid),

Figure 5: Index join method (diff from Figure .

table’s statistics). The result of these join operations produce all
term predicates mentioned in the rule that have a matching table
identifier definition. The selection predicateedPos < TermC en-

sures that we do not join with the rule’s head predicate (which is
last in the rule’s terms, by convention). The functibRontains

tests for containment of the predicate identifiared1D) in the sub-

plan QuterPlan). Any tuples that meet the constraints imposed
by this rule generate a nepran tuple with the “SCAN” access
method (since the predicate table will be scanned for each outer
tuple). Each new plan tuple is given a newan variable that ap-
pends thebredID to theouterP1an subplan variable . The cardinal-

ity (card) and cost €ost) estimates are given values based on the
simple costing measures suggested by System R in the absence of
indices; clearly these expressions can be enhanced, as we discuss

terms by appending a single, as yet unused term from the rule bodyin SectiodZ.1]3.

to an optimal plan of sizé terms.
We first describe the rules for plan generation and conclude with
the rules for optimal plan selection.

4.1.1 Plan Generation
Theplan table stores query plans for each rule in the program.

Among other things, it defines the physical properties (i.e., access

An index-nested-loop-join plan is generated by rpde in Fig-
ure[3. The main difference between this rule and gge is the
additionalindex predicate, which adds index definitions to the re-
sulting table predicate tuples. (The common prefiygdf is omit-
ted in Figurd b to save space.) The functiDindexMatch tests
if the index can be used to perform the join using attributes from
the best plan schemauterschema) and attributes from the pred-

methods, sort order, cost) associated with the plan and the set ofCat€ table kredSchema). Any tuple results from this plan are as-

terms (i.e., table predicates, selections, and assignments) that pa

ticipate in the plan. The optimization begins when a tuple on the
programEvent event stream is received. When such a tuple is re-
ceived itis joined with theule table to get all rules in the program,
followed by thepredicate table to obtain all table predicates in the
rule. From this join result, a1an tuple is formed for each rule con-
taining the rule’s streaming predicate. This inittakn tuple seeds
the bottom-up search strategy for each rule.

The optimizer is defined by a set of plan generation rules that
extend the best-term plan with a new thus far unused term from

the rule body; examples appear in Figures 4[dnd 5. Each such rule

joins thevestPlanUpdate event predicate (generated when a new
k-term plan is found) with unused terms in the rule. If the new

term considered is a predicate, then the new plan must define a join

(Signed cardinality and cost estimates based on some cost function,

which uses the additional index selectivity information given by
theselectivity variable defined by thendex predicate. We also
support range predicates in our index-nested-loop-joins but do not
show the 3 relevant rules here.

A merge-join performs a join of a plan with a table predicate
mentioned in the rule body along some sorting attribute. The tuple
set from the outer plan and the predicate table must be ordered by
the sorting variable. The output of a merge-join operation preserves
the sorting attribute order. Therefore, than predicate generated
by the merge-join rule includes the sorting attribute in the value
of the sort variable. We note that theort variable in thetable
predicate identifies the sorting attribute of the tablenuA1 valued
Sort variable, in either the outer relati@nan predicate or the inner

method that connects the optimal subplan and the predicate table€lationtable predicate, means that the relation is unordered, and

via a physical join operator. The join methods we presently support

must be explicitly sorted prior to the merge-join operator. The cost

are scanned and index-based nested-loop-joins, as well as mergegf a merge-join operator incorporates the cost of explicit sorting of

join. The rules for plan generation from rule predicates are defined

either relation as needed.

around the supported join methods. Due to space constraints, we .
only show the rules that generate plans for nested-loop-join and 4-1.2 Best plan selection

index nested-loop-join access methods.

A nested-loop-join plan is generated for any table predicate ap-
pearing in the rule body. Rulg?2 in Figure[4 generates a (scanned)
nested-loop-join plan on all rule body table predicates not men-
tioned in theouterpPlan variable of thep1an predicate representing
the subplan. Thelan tuple representing the subplan is joined
with the predicate table (to get all predicate terms in the rule
body) followed by another join with theable table (to get each

Figure[® shows two rules that select the best plan from a set of
equivalent plans, in terms of the output result set and the order-
ing properties of the result set. TlhestCostPlan predicate picks
the plan with the minimum cost from the set of equivalent plans.
This aggregation query groups along the program identifier, rule
identifier, plan list, and sort keys. The functi®msetequals tests
whether the set of term identifiers in its two input plans are the
same, regardless of the order. The inclusion of the sort attribute

bpl bestCostPlanea, Pid, Rid, Plani, Sortil, amin<Cost>) :- ci branch(ea, Pid, Rid, f_groupID(SubPreds), O,

planUpdate(ea, Pid, Rid, -, Planl, Sortl), SubPreds, Bound) :-
plancea, Pid, Rid, -, -, -, -, winner(eA, Pid, Rid, GroupID, Cost),
Plan2, _, _, Cost, -, -, Sort2, .), branch(ea, Pid, Rid, GroupID, Pos, Preds, Bound),
f-setequals(Planl, Plan2), Sortl == Sort2. Pos < f.size(Preds), Bound := Cost,
SubPreds := f_removePredicate(Pos, Preds).

bp2 bestPlarn(es, Pid, Rid, PlanID, Plan2, Cost) :-
bestCostPlan(ea, Pid, Rid, Planl, Sortl, Cost), : . PR, .
plances, pid, Rid, PlaniD, ., -, ., Fl_gur(_a 7. Branch and bound generation in top-down opti-
Plan2, _, -, Cost, _, -, Sort2, .), mization.
f-setequals(Planl, Plan2), Sortl == Sort2.

bp3 bestPlanUpdateeA, Pid, Rid, PlanID) :-

bestPlan(eA, Pid, Rid, PlanID, _, .). The optimizer generates groups in a top-down order and within
each group it searches for the cheapest planwihaer. An upper
Figure 6: Best plan selection. bound is assigned to each group. A plan is pruned if its cost ex-

ceeds the group upper bound. The upper bound for a given group
is initialized to the parent group upper bound (the root group upper
in the group condition ensures the handling of what Selinger calls Pound is initialized to a cost of infinity) and continuously updated
“interesting orders” [29], along with optimal subplans. as new winner plans are discovered. The optimization terminates
The aggregation rulept triggers whenever a new plan is added When the root plan group has fully explored or pruned all possible
to the plan table (indicated by thlanUpdate event). Then, the Plans. The winner plan in the root group is then chosen to be the
bestCostPlan predicate is used in rulg?2 to select the identifier of ~ Pest-cost plan. . .
the best plan, which is inserted into thestp1an table. An update Figure[T gives the single recursive rule that generates groups
t0 thebestPlan table triggers a newestPlanUpdate event thatthe ~ Of plans in a top-down order (we omit the remaining rules due
plan generation rules, described in Secfion4.1.1, use to build new!o space). Abranch tuple contains the information that identi-

candidate plans. fies a given group. Specifically, it identifies the grogpofupIn),
a branch positionrps), the predicatespgeds) in the plan, and a
4.1.3 Improving Selectivity Estimation bound gound). A separateost relation maintains the cost of plans

For equality selection predicates, our System R rules above Sup_computed from the physical properties assigned to it during the op-

port selectivity estimates using a uniform distribution estimator timization. A plan of size; is formed out of the current best-cost
given by the index. For more precise estimates and to handle rangeP!an Of sizeék — 1 and the best-cost single predicate BlaA new
predicates, we have defined declarative rules that produce equi-_plan will only be generat_eq if its cost is less than the bound value
width histogramséw-histograms additional histogramming rules 11 the branch tuple containing the group to which the new plan be-
could be added analogously. The creation of an ew-histogram is /°Ngs: - , o
triggered by the installation of a fact in a metadata table of the ew- S_uppose the initial query_la M B XC. The optlmlze_rflrst ni-
histograms defined in the system. The metadata table contains thdi2lizes thewinner relation with a tuple for each group (i.eABC,

parameters of the histogram (i.e., the table name, the attribute po-AB’ AC, BC, A, B, () e_ach hav_ing a cost anf.in.i.ty: A sin-
sition, and the number of buckets). For example, the fact gle rule seeds the recursive rue in Figure[T by initializing the
branch relation with a tuple that defines the root group (i4BC')

sys::ewhistogram: :metadata(@LOCALHOST, "pred", 3, 10). and starts the optimization at positidrwith the predicates (A, B,
o . C) and a bound ofnfinity. The recursion proceeds in a top-down
creates a0 bucket equi-width histogram on tabjeed for the at- fashion. In the first step a newtanch tuple is generated that re-
tribute in the third position. moves the predicate in positidhgenerating the grouBC. An-

Each fact in the ew-histogram table triggers Evita Raced rules giner rule will generate a branch groupat the same time. The
that themselves generate new rules to create ew-histograms (detefecyrsion returns whensinner for group ABC' has been discov-
mining bucket boundaries based on the bucket count and the mi”ered, which occurs when groups and BC' have been fully ex-
and max values of the attribute), and to maintain bucket counts (per- plored and the next branch position (e.g., 1) is set for graG.
forming a count aggregation over the table attribute and grouped A group has been fully explored when its branch position reaches
by the bucket boundaries). The compiler stage that generates eW+he end. As new winners are discovered Baend variable is up-

histograms in this fashion consists 2 rules (92 lines). The his- ga1ed with the winning cost before proceeding to the next predicate.
togram data is stored in relational format with each row correspond-

ing to a single bucket. To exploit these histograms, the cost and se-4 .2 Magic-Sets Rewrite

lectivity estimation in the1an generation rules in Figurés 4 aind 5 The magic-sets rewrite is an optimization that can reduce the

can be modified to incorporate a join V\.’ith the histogre_lm da;a re_Ia- amount of computation in recursive Datalog queries, via a gen-
tion, and based on the bucket boundaries obtain density estimations, ., ji-ation of basic “selection pushdown” ideas. It combines the

for a given selection predicate. benefits of top-down and bottom-up evaluation of logic [34].
4.1.4 Top-down Optimization D_at_alog-orlent(_ad systems like P2 perf_orm a bottomfopward
i)) chaining evaluation on each rule, starting with known facts (tu-

The bottom-up, dynamic-programming search strategy is a nat- ples) and recursively resolving body predicates to the head pred-
ural fit to a Datalog-based rule language. However, a top-down jcate. The advantage of this strategy is that the evaluation can be
Cascades-style optimization strategy [30] is just as natural and in- 4ata driven (from known facts to possible deductions) in an opti-
tuitive in Evita Raced. We briefly describe how to implement the mizaple set-oriented dataflow manner, and will not enter infinite
Cascades branch-and-bound algorithm in OverLog. The full opti- loops for a class of statically verifiabkafeprograms. For exam-

mization consists 083 rules (204 lines). o ple, the query in the shortest path program (Fiddre 1) asks for the
In the Cascades optimizer, plans are classified groups A

group is an equivalence class of plans that produce the same result*The base case of this recursion costs single-table plans.

Q To understand the effects of this rewrite, we describe two ex-
“@“@“@4—@ perimental runs of the shortest-path program in Fiddre 1, before

e and after the magic-sets rewrite. The two programs are executed in

)) the simple link topology of FigurEl8 (node 1 is given the address
Figure 8: Experimental topology. localhost:10000). Nodes are started up one at a time in order of

the identifier, and the preloaded database consists of the links pic-
tured. For each experiment we measure the number of tuples sent
and received by each node, as well as pah tuples constructed.
The latter measure is meant to convey “work” performed by the
distributed program even in local computation that does not appear
on the network (e.g., local tuple computations, storage, and other
dependent actions on those tuples).

The top of Figuré® shows the number of tuples that each node
receives from the network during shortest-path computation. The
magic-sets rewritten program never causes more tuples to be re-
ceived than the original, and results in increasingly fewer tuples
received as we move to nodes farther away from the clique. That
is because many paths that are generated in the original program to
destinations within the clique other than nddare pruned early on

shortest path from all nodes to notiécalhost:10000. A bottom-
up evaluation applies theink tuples to ruleri, creating initial
path tuples. The program runs until it reaches a fixpoint. Any
shortestPath tuples matchingocalhost:10000 on their second
attribute match the programmer’s query. A deficiency of bottom-
up evaluation is that it will generate sorpeth andshortestPath
tuples that do not havecalhost : 10000 in the second attribute and
therefore cannot satisfy the programmer’s query. These irrefevan
deductions are avoided in top-down evaluation.

Magic-sets rewriting adds extra selection predicates to the rules
of a program to avoid the generation of irrelevant deductions. Con-
ceptually, given a rule of the form

H, :- G1,Ga,...,Gg. and never transmitted all the way to the far end. Similarly, the mid-
.) . dle plot in Figurd® shows the number of tuples each node trans-
where ,, is the head predicate arh . .. Gy, are the goal predi- it Again, the magic-rewritten program does a lot better. The
cates in the order of appearance in the rule, a magic-sets algorithmjnqjysion of the magic-sets rewrite reduces the number of sends in
intersperses selection predicates. . . s, to generate the rule all but one case (nodd). The node with identifiet0 is the only
H, :- 51,G1, 52, G2, ..., s, G. node with no incoming links and is therefore never burdened with

network traffic other than its own; as a result, though its received
Facts for the new selection predicates are generated accordingyple overhead benefits from magic sets, its transmitted tuple over-
to bindings of the variables off, in the users query (e.g., head is unaffected, since the node sends no extraneous path tuples
localhost: 10000), or other identified attribute bindings in the pro- other than its sole path towards noﬂd:ina”y’ path Storage over-
gram. Appendid{A gives further details on the magic-sets algo- head is reduced by magic sets everywhere (Figlre 9 bottom), since
rithm and describes the OverLog rules that perform the main steps the rewrite prunes away irrelevapath tuples both received from
involved in performing the rewrite. the network, and generated locally.

T T T T T T T T T T
25 1 Baselinexxxx
Magic sets n——

_ 4.3 Wireless Protocol Optimization

4 The previous two examples were well developed, traditional op-
timizations from the database literature that have applications in
the networking domain. We now turn to an example taken directly
from networking: optimizing the way in which tuples are sent from
a given source to many destinations in a wireless environment. In
. such settings, a sender often has the choice to either communicate

Baseline xocxx i one-to-one directly with each desired receivenitastcommuni-
Magic sets n— . . .

cation), or to communicate one-to-all with every notleo@dcast

communication). For unicast, the send and receive costs are pro-
portional to the number ohtendeddestinations, which could be
lower than the size of the entire network. For broadcast, the send
cost is the cost to send a single tuple. However, the receive cost
is proportional to the number of nodes in the network, since ev-

XX

T

XA
VAN

X
T

VAN

XX

XX
X2

Tuples received
[
[6;]
T

X>
X

KO

(XXX

I

Ye¥eYe%

%%

NaYaYeYa Y%

Tuples sent
[
[6;]

0]
T 25 ' Baselner=] ery node will receive the tuple, even those that are not an intended
g Magic sets mm— o I destination.

g 2 The decision of when to use unicast, broadcast, or evetti-
> 15 cast—one-to-some instead of one-to-all—can dramatically impact
< 10 the design of a system, wireless or wired. For instance, much
£ 5 research in replicated systems concentrates on when to use each
0 { mode of communication to maximize throughput and minimize re-
1 2 3 4 5 6 7 8 9 10 sponse times, and how to architect entire protocols around that de-
Node ID cision [8, 19]. Moreover, with battery-powered networks such as
wireless sensornets, radio send and receive operations dominate en-

Figure 9: For each node (node ID onz axis), number of tuples ergy consumption, so minimizing communication cost is a primary

received (top), sent (middle), and locally generated (bottom) on concern [16]. The best choice depends not only upon the number

the y axis. of intended destinations (which is application-dependent) but also
upon the relative costs of transmission and reception (which is de-

. . pendent on the radio technology used). It is difficult and unusual

4.2.1 Magic Sets in the Network for programmers to consider these factors jointly, so this is an ex-

12 - sensornet testbed through 8200 events. Unicast is preferrable if the

10 4 selectivity is below 4 nodes whereas broadcast is preferrable if the

1 I selectivity is at least 4 nodes. As selectivity increases and more
U

8
i | OB:RX nodes are interested in each event, the cost of unicast increases
5 4 I:I l I:I I I:I I:I QOBTX whereas the cost of broadcast remains constant. Selecting the best
o0 - = UiRX protocol leads to as much aga x reduction in total radio opera-
B | u ‘ slulsluleluls Ul i _tlons, Whl_ch in the sen_sornet case, tra_nslgtes into a nearly identical
' increase in energy savings and node lifetime.
1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ While we have presented this broadcast vs. unicast rewrite as a
static compile-time optimization, we have also implemented three
Receiver Selectivity (6 Potential Receivers) additional compiler rules that enable a protocol to make the choice
dynamically during runtime. The key difference is that the dynamic
Figure 10: Radio operations { axis) versus receiver selectivity case includes the cost function and both the broadcast and unicast
of remote events ¢ axis), for a network of 7 nodes, broken down versions of the original rule in the rewrite’s output.
by Unicast, Broadcast, Transmit (TX) and Receive RX).

B

Radio Operations x 10000

4.4 Compilation Overhead

The metacompiler adds some overhead to the compilation pro-
cess that did not exist in P2’s original monolithic compiler. Even
so, the most complex of our OverLog programs compile on the or-
der of seconds with both the System R optimization and Magic-sets
rewrite installed. For instance, our version of the Chord overlay
written in OverLog [25] compiles in 31.607 seconds. As a com-
parison we took MIT’s C++ Chord code and ran it through g++,
which took 43.694 seconds. In the Declarative Networking setting,
compilation in less than a minute is usually more than adequate,
since networking programs typically define the ongoing behavior
of a continuously-running, long-lived dataflow.

cellent target for automatic optimization.

Evita Raced allows us to express this optimization in a relatively
straightforward fashion. Consider the following rule template:
predRemote (@A, ...): -

predlLocal 1(@B,...),...,predLocal n(@B,...),
predLink (@B, A).
The results of the above rule are to be sent from source Bode
to destination node. For ease of exposition, we assume that the
destination node is determined byredLink, though generally it

could be determined in any of theedLocal predicates. . .
P L L) However, in some cases we have been sensitive to startup over-
The main idea of the rewrite is to gather selectivity information ; .
heads in our use of P2. For instance, some of our performance

on intended destinations and use it to generate either a unicast or a . - .) .
: X experiments assume that the start times for all nodes will be identi-
broadcast version of the rule. The rewrite rule

e cal. Given compilation times with a mean on the order of seconds,
destcountRemote (@B,a_countdistinct<A>,...) :- . I .
the variance of compilation time across nodes can lead to an unac-
predLocal_1(@B,...),...,predLocal n(@B,...), o
i ceptable jitter in the start of the experiment. Compilation costs at
predLink (@B, A). . . I
. I . install time can be reduced by precompiling an OverLog program
computes the number of distinct destinations for each unique . L . . .
- - - ; into one of two possible intermediate representations. One avail-
predRemote tuple. This count is fed into a cost function of the L . : o
eneral form able representation is rewritten OverLog, representing the original
g program after being processed by some number of OverLog-to-

sendRemote (@B, ...,U_Cost, B_Cost) :- - . . K .
¢)_) OverLog compilation stages. At installation time, Evita Raced can
destcountRemote (@B,Destinations,...), > .
) be configured to avoid any stages that have already been run. An
sys_network(@B, NetSize, SendCost, RecvCost), . . X . .
’ ; alternative intermediate representation is the textual dataflow de-
U_Cost := Destinations * (SendCost + RecvCost),

scription generated by the Physical Planner. The load time of this
representation is almost immediate, and even outpaces the installa-
tion time in the original monolithic compiler.

B_Cost := SendCost + NetSize * RecvCost).
If B_Cost < UCost, then the original rule is rewritten as a
broadcast rule, using a special broadcast address from the
wirelessBroadcast relation that is uniquely defined in a wireless

predRemote_broadcast (CBROADCAST,a mkset<A>,...) :- The pioneering work on extensible query optimizer architectures
predLocal 1(@B,...), ..., predLocal n(@B,...), was done in the EXODUS [10] and Starburst [22, 27] systems,
predLink(@B, A), which provided custom rule languages for specifying plan trans-
wirelessBroadcast (@B, BROADCAST). formations. The EXODUS optimizer generator used a forward-

The resulting tuple contains the set of all intended destinations (col- chaining rule language to iteratively transform existing query plans
lected by thea mkset aggregation function), and the attribute val- into new ones. Follow-on work (Volcano [14] and Cascades [12])
ues of the original tuple. Another rule that receives a tuple of type exposed more interfaces to make the search in this space of trans-
predRemote_broadcast Will check if it is an intended destination formations more efficient. Starburst had two rule-based optimiza-
(through a set membership check) and, if so, project the receivedtion stages. The SQL Query Rewrite stage provided a production
tuple ontopredremote. ON the other hand, ¥_Cost > U_Cost, then rule execution engine, for “rules” that were written imperatively in
we simply revert to the original unicast version of the rule. C; itincluded a precedence ordering facility over those rules [27].
We implemented this rewrite in 8 rules (63 lines) for wire- The cost-based optimizer in Starburst was more declarative, tak-
less sensornets, using Evita Raced as the compiler front end andng a grammar-based approach to specifying legal plans and sub-
DSN [6] as the back end and runtime. For testing, we fed as input plans [22]. These rule-based optimizers have been extremely influ-
to the compiler a simple event detection program that periodically ential in industry: the Microsoft SQL Server and Tandem optimiz-
sends alerts from one node to some fraction of the other nodes.ers are based on the Cascades design, and the optimizer in IBM’'s
This fraction can vary due to event types and node interest. Fig- DB2 is based on the Starburst design.
ure[I0 shows the results of running this program on our seven-node The Starburst cost-based optimizer is the closest analog to Evita

10

Raced in the literature. In the paper, the authors explicitly draw even smallish batches of rules contain significant conceptual den-
analogies between their approach and Datalog, but stop short andsity. We found that understanding non-trivial amounts of Over-
distinguish between an optimizer — which in their view manipulates Log — especially someone else’s OverLog — can be difficult simply
query plans — and a datalog engine, which manipulates data [22]. because the intent of the program gets complex quickly. This is

Relative to the previous rule-based extensible optimizers, Evita exacerbated by the notation of variable unification, which relies on
Raced innovates on a number of fronts. First, by treating query the programmer being able to visually match variable names across
plans as data, it can reuse the dataflow engine to implement the opterms in a rule. Additionally, the need to pay close attention to the
timizer rule evaluation. This metacompilation approach provides position of variables in comma-separated lists is vexing when table
significanteconomy of mechanisra well-established principle in arities get above 3 or 4. Finally, the lack of modularity or encap-
developing reliable software [28]. Second, Evita Raced allows all sulation in Datalog syntax does nothing to encourage good code
aspects of the optimizer to be extended, including not only the plan structuring and reuse, topics that matter a lot when the number of
transformations and cost functions, but also the search strategiesrules climbs into the many dozens. These latter problems can be
For example, we switched from a System-R-based, bottom-up op- addressed via syntactic reworkings and extensions of OverLog, an
timizer to a Cascades-based, top-down optimizer in response to ainteresting design problem we are actively considering.
reviewer’s request with great ease in fewer than 24 hours (Sec- A third class of problems arises from the semantics of Over-
tion[£1.3); we are not aware of any other optimizer framework Log’s extensions to Datalog, especially with respect to event tables.
where this kind of radical change would be so easy to achieve. While OverLog ostensibly promises Datalog-like semantics within
Third, the tabularization of code in Evita Raced enables code anal- a (local) fixpoint computation, in order to truly understand the be-
ysis via standard queries — for example, stratification tests or other havior of a long-running OverLog program, you have to understand
static program analyses useful for debugging. Finally, the use of what happens across multiple fixpoints — i.e., across the handling
a logic-based language brings a measure of semantic rigor to theof multiple event tuples. That means thinking declaratively within
extensibility language, as well as theoretical tests from the Data- a fixpoint, but reasoning about ordering among events that are han-
log literature that help in program understanding. This potentially dled across multiple fixpoints. It is not clear how to address this;
alleviates some traditional software engineering problems with un- one possible direction is to bring concepts from temporal logic into
derstanding rule interactions in more ad-hoc rule languages. OverLog to reason about this more declaratively.

Another interesting extensible query optimizer is Opt++ [17],an Finally, in talking to colleagues in industry, one constant we hear
elegant object-oriented design for an optimizer that is customizable is that — regardless of the underlying extensibility architecture — the
via inheritance and overloading. A specific goal of Opt++ was to development and maintenance of query optimizers is a major chal-
make the search strategy extensible, enabling not only top-downlenge. For one thing, it is hard to debug code when the output's
vs. bottom-up state-space enumeration, but also randomized searcleorrectness (e.g., minimality of cost) is too expensive to verify in
algorithms. Evita Raced embraces these additional dimensions ofgeneral. Also, optimizers simply contain a lot of logic, includ-
extensibility introduced by Opt++, but provides them in a much ing statistics, search algorithms, and manipulation of complex data

higher-level declarative programming framework. structures with a lot of object sharing (e.g., of subplans). Our ex-
perience with Evita Raced is that declarative programming and re-
6. DISCUSSION lational modeling can help mitigate these challenges quite a lot,

but there is no panacea — good design and taste are still required
to successfully separate concerns in the problem space (e.g., mea-
surement vs. modeling in statistics generation, logical vs. physical
query plan issues, etc.), and develop well modularized solutions.

When we began this project, we did not know whether a fully
declarative compiler was feasible or useful. We have been sur-
prised by just how positive our experience with Evita Raced has
been. It has allowed us to upgrade P2 from having essentially no
optimizations of note, to having quite a sophisticated suite of op-
tir?lizations, rewrites, and prog?aqm analysez. However, not everF;/- 7. CONCLUSION AND FUTURE WORK
thing was smooth, and in this section we list some of the chief The Evita Raced metacompilation framework allows OverLog
lessons from our experience, which suggest research directions fo compilation tasks to be written in OverLog and executed in the P2
improving this line of work. runtime engine. It provides significant extensibility via a relatively

The most difficult problems we faced were due to discrepancies clean declarative language. Many of the tasks of query optimiza-
between P2’s runtime behavior and Datalog semantics. In fact, thetion — dynamic programming, dependency-graph construction and
current state of the system and language as described in 9eclion 2. hnalysis, statistics gathering — appear to be well served by a recur-
is already quite a bit crisper than what we had when we started this sive query language. The notion of metacompilation also leads to
work. Along the way, we often had to reason about operational a very tight implementation with significant reuse of code needed
issues at the dataflow execution level, and find work-arounds that for runtime processing.
ended up complicating our optimization code. Since then, the P2 Even with the caveats expressed in the previous section, we are
group has moved the runtime onto a much cleaner semantic footing,convinced that a declarative metacompiler is much easier to pro-
and today our optimization rules no longer require work-arounds gram and extend than the monolithic query optimizers we have
for the remaining implementation flaws mentioned at the end of worked on previously. We are now at a point where we can add
Section[Z]l. This experience has strongly reinforced our belief significant features (e.g., histograms, broadcast rewrites, staatific
that truly declarative languages with clean semantics are superiortion tests) in an hour or two, where they would otherwise have taken
to more ad-hoc event-condition-action rule languages. Coding and days or weeks of work in a traditional implementation.
debugging is significantly eased by the ability to ignore runtime One surprising lesson of our work was the breadth of utility af-
considerations, and instead work from declarative semantics. forded by the metacompilation framework. Although motivated by

The second class of problems we faced came from our roots performance optimizations, we have used Evita Raced for a number
in Datalog, and the challenge of scaling the cognitive burden of of unforeseen tasks. These include: automatically expanding user
Datalog-style programming into hundreds of rules developed by programs with instrumentation and monitoring logic; generating
multiple people. The downside of OverLog’s conciseness is that pretty-printers of intermediate program forms; language wrappers

11

for secure networking functionality in the manner of SecLog [1];

stratification detectors and other static code analyses. None of these

are performance optimizations per se, but all fit well within an ex-
tensible, declarative program manipulation framework. As Over-

Log and P2 mature, we expect the use of the metacompilation ap-

proach to get even easier, and expect it will (recursively) help us
to implement better versions of the language and runtime. More
generally, we believe that metacompilation is a good design phi-
losophy not only for our work, but for the upcoming generation of
declarative engines being proposed in many fields.

Acknowledgments

Thanks to Goetz Graefe and Hamid Pirahesh for helpful insights
and perspective, and to Kuang Chen for editorial feedback.

8. REFERENCES

[1] M. Abadi and B. T. Loo. Towards a Declarative Language
and System for Secure Networking.limternational
Workshop on Networking Meets Databases (Net22B7.
[2] T. Anderson, L. Peterson, S. Shenker, and J. T. (Eds). Repo
of nsf workshop on overcoming barriers to disruptive
innovation in networking. Technical Report 05-02, GENI
Design Document, Jan. 2005.
M. P. Ashley-Rollman, M. De Rosa, S. S. Srinivasa, P. Pillai,
S. C. Goldstein, and J. D. Campbell. Declarative
Programming for Modular Robots. Morkshop on
Self-Reconfigurable Robots/Systems and ApplicatRiesy .
R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. 8iIGMOD, 2000.
N. Belarmani, M. Dahlin, A. Nayate, and J. Zheng. Making
Replication Simple with Ursa. IBOSP Poster Sessid007.
D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and |. Stoica. The Design and Implementation of
a Declarative Sensor Network System SanSys2007.

[7] T. Condie, J. M. Hellerstein, P. Maniatis, and S. R. T.
Roscoe. Finally, a use for componentized transport protocols.
In HotNets IV 2005.

[8] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ Replication: A Hybrid Quorum Protocol for
Byzantine Fault Tolerance. @SDI, 2006.

[9] J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp
ling: Weighted dynamic programming and the Dyna
language. IfProc. Human Language Technology Conference
and Conference on Empirical Methods in Natural Language
Processing (HLT-EMNLRR005.

[10] D. D. G. Graefe. The EXODUS Optimizer Generator. In
SIGMOD, 1987.

[11] P. Grace, D. Hughes, B. Porter, G. Blair, G. Coulson, and
F. Taiani. Experiences with Open Overlays: A Middleware
Approach to Network Heterogeneity. EuroSys2008.

[12] G. Graefe. The cascades framework for query optimization.
IEEE Data Eng. Bull.18(3), 1995.

[13] G. Graefe. Iterators, schedulers, and distributed-memory
parallelism.Softw. Pract. Exper26(4), 1996.

[14] G. Graefe and W. J. McKenna. The Volcano Optimizer
Generator: Extensibility and Efficient SearchIGDE,

1993.

[15] J. M. Hellerstein. Toward network data independence.
SIGMOD Rec.32(3), 2003.

[16] J. L. Hilland D. E. Culler. Mica: A wireless platform for
deeply embedded network&EE Micro, 22(6):12—-24, 2002.

(3]

(4]

(5]
(6]

12

[17] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans. In
SIGMOD, 1998.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular route&xCM Trans. Comput.
Syst, 18(3), 2000.

[19] R. Kaotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine Fault ToleranceSIRSR
2007.

[20] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin,

D. Avots, M. Carbin, and C. Unkel. Context-Sensitive
Program Analysis as Database QuerieP@DS 2005.

[21] N. Liand J. Mitchell. Datalog with Constraints: A
Foundation for Trust-management Languages. In
International Symposium on Practical Aspects of
Declarative Language£003.

[22] G. Lohman. Grammar-like Functional Rules for
Representing Query Optimization Alternatives SIGMOD,
1988.

[23] B. T. Loo.The Design and Implementation of Declarative
Networks PhD thesis, University of California, Berkeley,
2006.

[24] B.T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
|. Stoica. Declarative Networking: Language, Execution and
Optimization. INSIGMOD, 2006.

[25] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,

T. Roscoe, and |. Stoica. Implementing Declarative Overlays.
In SOSR2005.

[26] B.T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. INSIGCOMM 2005.

[27] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/Rule-Based Query Rewrite Optimization in
Starburst. I'SIGMOD, 1992.

[28] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systemBroceedings of the IEEE
63(9), Sept. 1975.

[29] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access Path Selection in a Relational Database
Management System. BIGMOD, 1979.

[30] L. D. Shapiro, D. Maier, P. Benninghoff, K. Billings, Y. Fan,
K. Hatwal, Q. Wang, Y. Zhang, H. min Wu, and B. Vance.
Exploiting upper and lower bounds in top-down query
optimization. Ininternational Database Engineering and
Application Symposiuppages 20-33, 2001.

[31] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicatesMhDB, 2007.

[32] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe.
BFT Protocols Under Fire. INSDI, 2008.

[33] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel.
Distributed monitoring and forensics in overlay networks. In
EuroSys2006.

[34] J. D. Ullman.Principles of Database and Knowledge-Base
Systems: Volume II: The New Technolog&sH. Freeman
& Co., New York, NY, USA, 1990.

[35] W. White, A. Demers, C. Koch, J. Gehrke, and
R. Rajagopalan. Scaling games to epic proportions. In
SIGMOD 2007.

materialize(sup,infinity,infinity,keys(2,3,4)).
materialize(adornment,infinity,infinity,keys(2,5,6)).
materialize(idbPredicate,infinity,infinity,keys(2,3)).

mg1 goalCount(ea, Pid, Name, @ COUNt<*>) :-
idbPredicate(ea, Pid, Name),
adornment(eA, Pid, Rid, Pos, Name, Sig).

mg2 magicPred(eA, Pid, Name, Sig) :-
goalCount(ea, Pid, Name, Count),
adornment(eA, Pid, _, _, Name, Sig).
Count == 1.

mg3 SUP(@A, Pid, Rid, Pos, Name, Schema) :-
magicPred(ea, Pid, Name, Sig),
rule (ea, Rid, Pid, ., HeadPid, _, -, _),
predicate(eA, HeadPid, Rid, -, Name, -, -, Schema,
R N
Schema := f_project(Sig, Schema),
Name := "magic_" + Name, Pos := 0.

mg4 SUpNext(eA, Pid, Rid, Pos+1, Schema) :-
sup(eA, Pid, Rid, Pos, Name, Schema).

mg5 SUP(@A, Pid, Rid, Pos, Name, Schema) :-
SsupNext(eA, Pid, Rid, Pos, PrevSupSchema),

rule (eA, Rid, Pid, RuleName, _, _, -,),
predlcate(@A, _, Rid, -, -, -, -, Schema, Pos, -,),
Name := "sup_" + RuleName + "_" + f_tostr(Pos),

Schema := f_merge(PrevSupSchema, PredSchema).

mg6é adornment(eA, Pid, Rid, Pos, Name, Sig) :-
supNext(@A, Pid, Rid, Pos, PrevSupSchema),
idbPredicate(ea, Pid, Name),
rule (eA, Rid, Pid, -, -, -, -,),
predicate(es, -, Rid, _, Name, -, _,
Schema, Pos, -, .),
Sig := f_adornment(PrevSupSchema, Schema).

Figure 11: Rule/Goal graph traversal rules.

APPENDIX
A. MAGIC-SETS RULE DESCRIPTION

an adornment stringgs{g), which is initially populated (by a single
rule, not shown) with the query predicate adornments. Ryle
counts the number of adornments for edbi8 predicate. If this
count is uniquedount == 1) in rulemg2, then amagicPred tuple is
created. Rulegs triggers on anagicPred tuple and, for each rule
whose head predicate is named byihgicPred tuple, it generates

a sup predicate with &chema attribute containing the bound vari-
ables that exist at the given rule position. Ruf@ detects a new

sup predicate (like the one generated for the rule head) and trig-
gers an event for the subsequews predicate position in the given
rule. The three way join in rulegs produces a tuple that contains
the schema of the previossp predicate ErevSupSchema) and the
schema of the predicata@dhena) in the subsequent rule position,
should one exist. Two more rules (not shown) move ¢fygNext
position forward if the given rule position does not identify a pred-
icate. The headup predicate schema in rulgs contains all the
variables from the previousup predicate and the schema of the
current predicate, since this schema represents the bound variables
that will exist in the subsequent rule position. Rujs creates an
adornment OUt Of the predicate in the given rule position, if that
predicate is part of théDB. The f_adornment function creates a
new signature from the bound variables in #i@vSupSchema at-
tribute, and the variables in the predicatena attribute. At the

end of the rule/goal graph traversal, those predicates that define
a unique adornment become magic predicates, and the rules that
mention these magic predicates are rewritten using the information
contained in theup table.

Ullman’s textbook description of magic sets [34] can be viewed
as a traversal of a directed graph called Bide/Goalgraph. We
briefly review his description here as a refresher to help clarify the
declarative specification that follows. For a more thorough intro-
duction to the algorithm, we direct the reader to the textbook [34].
The vertices of the Rule/Goal graph are rules and goals, and the
edges represent data dependencies. Briefly put, a goal points to a
rule if it appears in the rule body, while a rule points to a goal if
that goal appears in the rule head. In the magic-sets algorithm, the
Rule/Goalgraph is rooted by the query predicate. The traversal of
the Rule/Goalgraph generates nemagic predicates that contain
the set of variable bindings presented in a program’s derived pred-
icates. A magic predicate is generated for each “goal” vertex that
defines a unique “adornment”, where an adornment is a variable-
binding pattern that indicates which variables are free and which
are bound to a constant. supplementaryredicate is also cre-
ated for all encountered “rule” vertices during this graph traversal.
Supplementary predicates capture the way variable bindings can
be passed “sideways” from left-to-right through the terms of a rule
body.

To give a flavor of the OverLog implementation of magic-sets,
Figure[T1 shows six rules that create the magic and supplementary
predicates through a traversal of tRele/Goalgraph (rules in the
graph correspond to then1e predicate, and goals are given by the
predicate predicate). These six rules correspond to stegsdi:
of Algorithm 13.1 in Ullman’s textbook [34, Chapter 13].

Theadornment predicate contains the predicate namsné) and

13

	1 Introduction
	1.1 A Reflection on Declarative Languages

	2 P2: Language and Architecture
	2.1 OverLog, Revisited
	2.1.1 A Canonical Example

	2.2 The P2 Runtime Engine
	2.2.1 Dataflow Elements
	2.2.2 The P2 Event Loop

	3 Declarative Compilation
	3.1 Table-izing Optimizer State
	3.2 Metacompiler Architecture
	3.2.1 The Stage API
	3.2.2 Stage Scheduling

	3.3 Compiler Bootstrapping
	3.3.1 Parser
	3.3.2 Physical Planner
	3.3.3 Plan Installer

	3.4 Discussion

	4 Query Compilation Stages
	4.1 Query Optimization
	4.1.1 Plan Generation
	4.1.2 Best plan selection
	4.1.3 Improving Selectivity Estimation
	4.1.4 Top-down Optimization

	4.2 Magic-Sets Rewrite
	4.2.1 Magic Sets in the Network

	4.3 Wireless Protocol Optimization
	4.4 Compilation Overhead

	5 Related Work
	6 Discussion
	7 Conclusion and Future Work
	8 References
	A Magic-sets rule description

