
Declarative Networking

Mothy

Joint work with Boon Thau Loo, Tyson Condie,
Joseph M. Hellerstein, Petros Maniatis, Ion Stoica

Intel Research and U.C. Berkeley
June 1, 2005

Off the top of my head�

� Running packet networks remains a
complex and difficult problem.

� Despite ~25 years of research, no
abstractions have emerged to
modularize the problem.

� I find this astonishing. Can
someone correct me?

It�s not all been wasted�
� Lots of measurement

� ⇒ lots and lots of data now
� Understand �network level� well

� TCP, BGP, Malware, etc.
� Plenty of control mechanisms

� DCAN, RCP, 4D, etc., etc.

� Hypothesis: for IP at least, we as
researchers already understand this
well enough to abstract and uplevel.

� Can we just move on?

Mental exercise

� For a moment, try to forget
everything you know about BGP,
OSPF, IS-IS, DVMRP, etc., etc.

� Take a deep breath or two.

� Doesn�t that feel good?

A different abstraction

� The set of routing tables in a network
represents a distributed data structure

� The data structure is characterized by
a set of ideal properties which define
the network
� Think in terms of structure, not protocol

� Routing is the process of maintaining
these properties in the face of changing
ground facts
� Failures, topology changes, load, policy�

Routing and Query Processing

� In database terms, the routing
table is a view over changing
network conditions and state

� Maintaining it is the domain of
distributed continuous query
processing

Distributed Continuous Query
Processing

� Relatively new and active field
� SDIMS, Mercury, IrisLog, Sophia,

etc., in particular PIER
� ⇒ May not have all the answers yet

� But brings a wealth of experience
and knowledge from database
systems
� Relational, deductive, stream

processing, etc.

Goal: a constrained declarative
language for network specification

� Higher-level view of routing properties
� More than simply a configuration language

� Modular decomposition of function
� Static analysis for:

� Optimization techniques
� Safety checking

� Dynamic optimization
� C.f. eddies, etc.

Other advantages
� Can incorporate other knowledge into

routing policies
� C.f. Jennifer�s examples, and beyond
� E.g. Physical network knowledge

� Naturally integrates discovery
� If you buy Paul�s argument

� Also provides an abstraction point for
such information
� Knowledge itself doesn�t need to be

exposed.

What are we doing, then?

� Express network properties in
DataLog
� Preliminary to better languages

� Execute specifications to maintain
routing and discovery

� Two directions / implementations:
� IP Routing (SIGCOMM 2005)
� Overlays (under submission)

Why overlays?
� Overlays in a very broad sense

� Any application-level routing system
� Email servers, multicast, CDNs, DHTs, etc.

� Ideal test case
� Clearly deployable short-term
� Defers interoperability issues

� The overlay design space is wide
� ⇒ ensures we cover the bases

� Testbed for wider applicability

A Declarative Overlay Engine:
�P2�

� Everything is a declarative query
� Overlay construction, maintenance, routing,

monitoring
� Queries compiled to software dataflow

graph and directly executed
� System written from scratch (C++)

� Deployable (PlanetLab, Emulab)
� Already has reasonable performance for

deployed overlays

P2
DataLog

Received
Packets

Sent
Packets

Software
Dataflow
Graph

Example: Chord in 33 rules

Comparison: MIT Chord in C++

Conclusion
� An abstraction and infrastructure for

radically rethinking networking
� One possibility: System R for networks

� Where does the network end and the
application begin?
� E.g. can run queries to monitor the network

at the endpoints
� Integrate resource discovery, management,

routing
� Chance to reshuffle the networking deck

Thanks.

