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Off the top of my head�

� Running packet networks remains a 
complex and difficult problem.

� Despite ~25 years of research, no 
abstractions have emerged to 
modularize the problem. 

� I find this astonishing.  Can 
someone correct me?



It�s not all been wasted�
� Lots of measurement

� ⇒ lots and lots of data now
� Understand �network level� well

� TCP, BGP, Malware, etc. 
� Plenty of control mechanisms

� DCAN, RCP, 4D, etc., etc. 

� Hypothesis: for IP at least, we as 
researchers already understand this 
well enough to abstract and uplevel. 

� Can we just move on?



Mental exercise

� For a moment, try to forget 
everything you know about BGP, 
OSPF, IS-IS, DVMRP, etc., etc.

� Take a deep breath or two.

� Doesn�t that feel good?



A different abstraction

� The set of routing tables in a network 
represents a distributed data structure

� The data structure is characterized by 
a set of ideal properties which define 
the network
� Think in terms of structure, not protocol

� Routing is the process of maintaining 
these properties in the face of changing 
ground facts
� Failures, topology changes, load, policy�



Routing and Query Processing

� In database terms, the routing 
table is a view over changing 
network conditions and state

� Maintaining it is the domain of 
distributed continuous query 
processing



Distributed Continuous Query 
Processing

� Relatively new and active field
� SDIMS, Mercury, IrisLog, Sophia, 

etc., in particular PIER
� ⇒ May not have all the answers yet

� But brings a wealth of experience 
and knowledge from database 
systems
� Relational, deductive, stream 

processing, etc.



Goal: a constrained declarative 
language for network specification

� Higher-level view of routing properties
� More than simply a configuration language

� Modular decomposition of function
� Static analysis for:

� Optimization techniques
� Safety checking

� Dynamic optimization
� C.f. eddies, etc.



Other advantages
� Can incorporate other knowledge into 

routing policies
� C.f. Jennifer�s examples, and beyond
� E.g. Physical network knowledge

� Naturally integrates discovery
� If you buy Paul�s argument

� Also provides an abstraction point for 
such information
� Knowledge itself doesn�t need to be 

exposed.



What are we doing, then?

� Express network properties in 
DataLog
� Preliminary to better languages

� Execute specifications to maintain 
routing and discovery

� Two directions / implementations:
� IP Routing (SIGCOMM 2005)
� Overlays (under submission)



Why overlays?
� Overlays in a very broad sense

� Any application-level routing system
� Email servers, multicast, CDNs, DHTs, etc.

� Ideal test case
� Clearly deployable short-term
� Defers interoperability issues

� The overlay design space is wide
� ⇒ ensures we cover the bases

� Testbed for wider applicability



A Declarative Overlay Engine: 
�P2�

� Everything is a declarative query
� Overlay construction, maintenance, routing, 

monitoring
� Queries compiled to software dataflow 

graph and directly executed
� System written from scratch (C++)

� Deployable (PlanetLab, Emulab)
� Already has reasonable performance for 

deployed overlays
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Example: Chord in 33 rules



Comparison: MIT Chord in C++



Conclusion
� An abstraction and infrastructure for 

radically rethinking networking
� One possibility: System R for networks

� Where does the network end and the 
application begin?
� E.g. can run queries to monitor the network 

at the endpoints
� Integrate resource discovery, management, 

routing
� Chance to reshuffle the networking deck



Thanks.


