
Implementing Declarative
Overlays

Timothy Roscoe

Joint work with Boon Thau Loo, Tyson Condie,
Joseph M. Hellerstein, Petros Maniatis, Ion Stoica

Intel Research and U.C. Berkeley
Tuesday, July 12, 2005

Broad Challenge: Network
Routing Implementation

� Protocol-centric approach is usual:
� Finite state automata
� Asynchronous messages / events
� Intuitive, but:

� Hard to:
� reason about structure
� check/debug
� compose/abstract/reuse

� But few, if any, new abstractions have
emerged for the problem.

Talk Overview

� Approach: take high-level view
� Routing and Query Processing
� Declarative specifications

� P2: a declarative overlay engine
� OverLog language
� Software dataflow implementation

� Evaluation: Chord as a test case
� Ongoing and future work

Declarative Networking

� The set of routing tables in a network
represents a distributed data structure

� The data structure is characterized by
a set of ideal properties which define
the network
� Thinking in terms of structure, not protocol

� Routing is the process of maintaining
these properties in the face of changing
ground facts
� Failures, topology changes, load, policy�

Routing and Query Processing

� In database terms, the routing
table is a view over changing
network conditions and state

� Maintaining it is the domain of
distributed continuous query
processing

Distributed Continuous Query
Processing

� Relatively new and active field
� SDIMS, Mercury, IrisLog, Sophia,

etc., in particular PIER
� ⇒ May not have all the answers yet

� But brings a wealth of experience
and knowledge from database
systems
� Relational, deductive, stream

processing, etc.

Goal: Declarative Networks
1. Express network properties as queries

in a high-level declarative language
� More than configuration or policy language
� Apply static checking
� Modular decomposition

2. Compile/interpret to maintain network
� Dynamic optimization (e.g. eddies)
� Sharing of computation/communication

Other advantages
� Can incorporate other knowledge

into routing policies
� E.g., physical network knowledge

� Naturally integrates discovery
� Often missing from current protocols

� Also provides an abstraction point
for such information
� Knowledge itself doesn�t need to be

exposed.

Two directions

1. Declarative expression of
Internet Routing protocols

� Loo et. al., ACM SIGCOMM 2005

2. Declarative implementation of
overlay networks

� Loo et. al., ACM SOSP 2005
� The focus of this talk

Specfic case: overlays
� Application level:

� e.g. DHTs, P2P
networks, ESM, etc.

� IP-oriented:
� e.g. RON, IPVPNs,

SOS, M/cast, etc.
� More generally:

routing fn of any
large distributed
system
� e.g MS Exchange,

mgmt systems

Internet

Overlay

Why overlays?
� Overlays in a very broad sense

� Any application-level routing system
� Email servers, multicast, CDNs, DHTs, etc.
� ⇒ broad applicability

� Ideal test case
� Clearly deployable short-term
� Defers interoperability issues
� Testbed for other domains

� The overlay design space is wide
� ⇒ ensure we cover the bases

Background

� PIER: distributed relational query
processor (Huebsch et.al.)

� Used DHT for hashing, trees, etc.
� Click: modular s/w forwarding

engine (Kohler et.al.)
� Used dataflow element graph

� XORP router (Handley et.al.)
� Dataflow approach to BGP, OSPF, etc.

P2: A declarative
overlay engine

OverLog
specification

Received
Packets

Sent
Packets

Software
Dataflow

Graph

Parser Planner

Data Model

� Relational tuples
� Two types of named relation:

� Soft-state tables
� Streams of transient tuples

� Simple, natural model for network
state
� Concisely expressed in a declarative

language

Language: DataLog
� Well-known relational query

language from the literature
� Particularly deductive databases
� Prolog with no imperative constructs
� Equivalent to SQL with recursion

� OverLog: variant of DataLog
� Streams & tables
� Location specifiers for tuples

Why DataLog?
� Advantages:

� Generality allows great flexibility
� Easy to map prior optimization work
� Simple syntax, easy to extend

� Disadvantages:
� Hard for imperative programmers
� Structure may not map to network

concepts
� Good initial experimental vehicle

Overlog by example
� Gossiping a mesh:

� materialise(neighbour, 1, 60, infinity).
� materialise(member, 1, 60, infinity).

� gossipEvent(X) :- localNode(X),
periodic(X,E,10).

� gossipPartner@X(X,Y) :- gossipEvent@X(X),
neighbour@X(Y).

� member@Y(Z) :- gossipPartner@X(X,Y),
coinflip(weight),
member@X(Z).

Software Dataflow Graph
� Elements represented as C++ objects
� V. efficient tuple handoff

� Virtual fn call + refcounts
� Blocking/unblocking w/ continuations
� Single-threaded async i/o scheduler

σ

σ

Typical dataflow elements
� Relational operators

� Select, join, aggregate, groupby
� Generalised projection (PEL)

� Networking stack
� Congestion control, routing, SAR, etc.

� �Glue� elements
� Queues, muxers, schedulers, etc.

� Debugging
� Loggers, watchpoints, etc.

Evaluation: Chord test case
� Why Chord?

� Quite complex overlay
� Several different data structures
� Maintenance dynamics, inc. churn

� Need to show:
� We can concisely express Chord�s

properties
� We can execute the specification

with acceptable performance

Chord (Stoica et. al. 2001)
a �distributed hash table�

� Flat, cyclic key space of 160-bit
identifiers

� Nodes pick a random identifier
� E.g. SHA-1 of IP address, port

� Owner of key k: node with lowest
ID greater than k

� Efficiently route to owner of any
key in ~log(n) hops

Chord data structures
� Predecessor node
� Successor set

� log(n) next nodes
� Finger table

� Pointers to
power-of-2
positions around
the ring

Chord dynamics
� Nodes join by looking up the owner

of their ID
� Download successor sets from

neighbours and perform lookups
for fingers

� Periodically measure connectivity
to successors & fingers

� Stabilization continously optimizes
finger table

Example: Chord in 33 rules

Dataflow graph
(some of it, at least)

Comparison: MIT Chord in C++

Perhaps a fairer comparison�

� Macedon (OSDI 2004)
� State machines, timers, marshaling,

embedded C++
� Macedon Chord: 360 lines

� 32-bit IDs, no stabilization, single
successor

� P2 Chord: 34 lines
� 160-bit IDs, full stabilization, log(n)

successor sets, optimized

Performance?

� Note: aim is acceptable
performance, not necessarily that
of hand-coded Chord

� Analogy: SQL / RDBM systems

Lookup length in hops

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14

F
re

qu
en

cy

Hop Count

128 nodes
192 nodes
256 nodes
384 nodes
512 nodes

Maintenance bandwidth
(comparable with MIT Chord)

 0

 50

 100

 150

 200

 250

 128 256 512 1024

M
ai

nt
en

an
ce

 B
W

 (
B

yt
es

/s
)

Population Size

Latency without churn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Latency (s)

100 nodes
500 nodes

Latency under churn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Latency (s)

8 min
16 min
32 min
64 min

Ongoing work
� More overlays!

� Pastry, parameterized small-world graphs
� Link-state, distance vector algorithms
� Assorted multicast graphs

� Proper library interface
� Code release later this summer

� Integrate discovery
� Exploit power of full query processor
� Can implement PIER in P2
� Integrated management, monitoring,

measurement

Ongoing work
� Rich seam for further research!

� The �right� language (SIGMOD possibly)
� Optimization techniques
� Proving safety properties

� Reconfigurable transport protocols
� Dataflow framework facilitates composition
� P2P networks introduce new space for

transport protocols
� Debugging support

� Use query processor for online distributed
debugging

� Potentially very powerful

Conclusion

� Diverse overlay networks can be
expressed concisely in a OverLog

� Specifications can be directly
executed by P2 to maintain the
overlay

� Performance of P2 overlays
remains comparable with hand-
coded protocols

Long-term implications
� An abstraction and infrastructure for

radically rethinking networking
� One possibility: System R for networks

� Where does the network end and the
application begin?
� E.g. can run queries to monitor the network

at the endpoints
� Integrate resource discovery, management,

routing
� Chance to reshuffle the networking deck

Thanks! Questions?

Timothy Roscoe
troscoe@acm.org

It�s real�

Consistency under churn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Consistent fraction

C
on

si
st

en
cy

 th
re

sh
ol

d

8 min
16 min
32 min
64 min

Bandwidth usage under churn

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4 8 16 32 64 128

M
ai

nt
en

an
ce

 B
W

 (
B

yt
es

/s
)

Session Time (min)

P2: A declarative
overlay engine

� Everything is a declarative query
� Overlay construction, maintenance, routing,

monitoring
� Queries compiled to software dataflow

graph and directly executed
� System written from scratch (C++)

� Deployable (PlanetLab, Emulab)
� Reasonable performance so far for

deployed overlays

