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Broad Challenge: Network 
Routing Implementation

� Protocol-centric approach is usual:
� Finite state automata
� Asynchronous messages / events
� Intuitive, but:

� Hard to: 
� reason about structure 
� check/debug
� compose/abstract/reuse

� But few, if any, new abstractions have 
emerged for the problem.



Talk Overview

� Approach: take high-level view
� Routing and Query Processing
� Declarative specifications

� P2: a declarative overlay engine
� OverLog language
� Software dataflow implementation

� Evaluation: Chord as a test case
� Ongoing and future work



Declarative Networking

� The set of routing tables in a network 
represents a distributed data structure

� The data structure is characterized by 
a set of ideal properties which define 
the network
� Thinking in terms of structure, not protocol

� Routing is the process of maintaining 
these properties in the face of changing 
ground facts
� Failures, topology changes, load, policy�



Routing and Query Processing

� In database terms, the routing 
table is a view over changing 
network conditions and state

� Maintaining it is the domain of 
distributed continuous query 
processing



Distributed Continuous Query 
Processing

� Relatively new and active field
� SDIMS, Mercury, IrisLog, Sophia, 

etc., in particular PIER
� ⇒ May not have all the answers yet

� But brings a wealth of experience 
and knowledge from database 
systems
� Relational, deductive, stream 

processing, etc.



Goal: Declarative Networks
1. Express network properties as queries 

in a high-level declarative language
� More than configuration or policy language
� Apply static checking
� Modular decomposition

2. Compile/interpret to maintain network
� Dynamic optimization (e.g. eddies)
� Sharing of computation/communication



Other advantages
� Can incorporate other knowledge 

into routing policies
� E.g., physical network knowledge

� Naturally integrates discovery
� Often missing from current protocols 

� Also provides an abstraction point 
for such information
� Knowledge itself doesn�t need to be 

exposed.



Two directions

1. Declarative expression of 
Internet Routing protocols

� Loo et. al., ACM SIGCOMM 2005

2. Declarative implementation of 
overlay networks

� Loo et. al., ACM SOSP 2005
� The focus of this talk



Specfic case: overlays
� Application level:

� e.g. DHTs, P2P 
networks, ESM, etc. 

� IP-oriented:
� e.g. RON, IPVPNs, 

SOS, M/cast, etc.
� More generally: 

routing fn of any 
large distributed 
system
� e.g MS Exchange, 

mgmt systems

Internet

Overlay



Why overlays?
� Overlays in a very broad sense

� Any application-level routing system
� Email servers, multicast, CDNs, DHTs, etc.
� ⇒ broad applicability

� Ideal test case
� Clearly deployable short-term
� Defers interoperability issues 
� Testbed for other domains

� The overlay design space is wide
� ⇒ ensure we cover the bases



Background

� PIER: distributed relational query 
processor (Huebsch et.al.)

� Used DHT for hashing, trees, etc.
� Click: modular s/w forwarding 

engine (Kohler et.al.)
� Used dataflow element graph

� XORP router (Handley et.al.)
� Dataflow approach to BGP, OSPF, etc.



P2: A declarative 
overlay engine
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Data Model

� Relational tuples
� Two types of named relation:

� Soft-state tables
� Streams of transient tuples

� Simple, natural model for network 
state
� Concisely expressed in a declarative 

language



Language: DataLog
� Well-known relational query 

language from the literature
� Particularly deductive databases
� Prolog with no imperative constructs
� Equivalent to SQL with recursion

� OverLog: variant of DataLog
� Streams & tables
� Location specifiers for tuples



Why DataLog?
� Advantages:

� Generality allows great flexibility
� Easy to map prior optimization work
� Simple syntax, easy to extend

� Disadvantages:
� Hard for imperative programmers
� Structure may not map to network 

concepts
� Good initial experimental vehicle



Overlog by example
� Gossiping a mesh:

� materialise(neighbour, 1, 60, infinity).
� materialise(member, 1, 60, infinity). 

� gossipEvent(X) :- localNode(X),
periodic(X,E,10).

� gossipPartner@X(X,Y) :- gossipEvent@X(X), 
neighbour@X(Y).

� member@Y(Z) :- gossipPartner@X(X,Y), 
coinflip(weight),
member@X(Z).



Software Dataflow Graph
� Elements represented as C++ objects
� V. efficient tuple handoff

� Virtual fn call + refcounts
� Blocking/unblocking w/ continuations
� Single-threaded async i/o scheduler

σ

σ



Typical dataflow elements
� Relational operators

� Select, join, aggregate, groupby
� Generalised projection (PEL)

� Networking stack
� Congestion control, routing, SAR, etc.

� �Glue� elements
� Queues, muxers, schedulers, etc. 

� Debugging 
� Loggers, watchpoints, etc.



Evaluation: Chord test case
� Why Chord?

� Quite complex overlay
� Several different data structures
� Maintenance dynamics, inc. churn

� Need to show:
� We can concisely express Chord�s 

properties
� We can execute the specification 

with acceptable performance



Chord (Stoica et. al. 2001)
a �distributed hash table�

� Flat, cyclic key space of 160-bit 
identifiers

� Nodes pick a random identifier
� E.g. SHA-1 of IP address, port

� Owner of key k: node with lowest 
ID greater than k

� Efficiently route to owner of any 
key in ~log(n) hops



Chord data structures
� Predecessor node
� Successor set

� log(n) next nodes
� Finger table

� Pointers to 
power-of-2 
positions around 
the ring



Chord dynamics
� Nodes join by looking up the owner 

of their ID
� Download successor sets from 

neighbours and perform lookups 
for fingers

� Periodically measure connectivity 
to successors & fingers

� Stabilization continously optimizes 
finger table



Example: Chord in 33 rules



Dataflow graph
(some of it, at least)



Comparison: MIT Chord in C++



Perhaps a fairer comparison�

� Macedon (OSDI 2004)
� State machines, timers, marshaling, 

embedded C++
� Macedon Chord: 360 lines

� 32-bit IDs, no stabilization, single 
successor

� P2 Chord: 34 lines
� 160-bit IDs, full stabilization, log(n) 

successor sets, optimized



Performance?

� Note: aim is acceptable
performance, not necessarily that 
of hand-coded Chord

� Analogy: SQL / RDBM systems
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Maintenance bandwidth
(comparable with MIT Chord)
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Latency without churn
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Latency under churn
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Ongoing work
� More overlays!

� Pastry, parameterized small-world graphs
� Link-state, distance vector algorithms
� Assorted multicast graphs

� Proper library interface
� Code release later this summer

� Integrate discovery
� Exploit power of full query processor
� Can implement PIER in P2
� Integrated management, monitoring, 

measurement



Ongoing work
� Rich seam for further research!

� The �right� language (SIGMOD possibly)
� Optimization techniques
� Proving safety properties

� Reconfigurable transport protocols
� Dataflow framework facilitates composition 
� P2P networks introduce new space for 

transport protocols
� Debugging support

� Use query processor for online distributed 
debugging

� Potentially very powerful



Conclusion

� Diverse overlay networks can be 
expressed concisely in a OverLog

� Specifications can be directly 
executed by P2 to maintain the 
overlay

� Performance of P2 overlays 
remains comparable with hand-
coded protocols



Long-term implications
� An abstraction and infrastructure for 

radically rethinking networking
� One possibility: System R for networks

� Where does the network end and the 
application begin?
� E.g. can run queries to monitor the network 

at the endpoints
� Integrate resource discovery, management, 

routing
� Chance to reshuffle the networking deck



Thanks!  Questions?

Timothy Roscoe
troscoe@acm.org



It�s real�





Consistency under churn
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Bandwidth usage under churn
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P2: A declarative
overlay engine

� Everything is a declarative query
� Overlay construction, maintenance, routing, 

monitoring
� Queries compiled to software dataflow 

graph and directly executed
� System written from scratch (C++)

� Deployable (PlanetLab, Emulab)
� Reasonable performance so far for 

deployed overlays


